Химия

УДК 541.61-31

МАГНИТНЫЕ СВОЙСТВА МЕЛКОДИСПЕРСНОГО NIO В ПАРАМАГНИТНОМ СОСТОЯНИИ

А.С. Сериков, В.В. Викторов, В.Е. Гладков, А.М. Колмогорцев

Проведен магнетохимический анализ мелкодисперсных оксидов никеля полученных термолизом основного карбоната в температурном интервале $380\text{-}800\,^{\circ}\text{C}$. Показано, что характерная зависимость магнитной восприимчивости χ от температуры измерения T_u наблюдается для образцов прокаленных выше $700\,^{\circ}\text{C}$.

Ключевые слова: магнитные свойства, мелкодисперсные системы, модель $\Gamma \mathcal{I} \mathcal{B} \Phi$

Введение

Оксиды с размерами частиц от нескольких единиц до сотен нанометров обладает рядом уникальных физико-химических свойств, обусловленных сильноразвитой поверхностью и специфическим состоянием приповерхностного слоя кристаллов [1]. Оксид никеля широко применяется как катализатор многих гетерогенных реакций или в качестве составляющего многокомпонентных систем. В мелкодисперсном состоянии кристаллическая решетка оксида никеля характеризуются различными структурными формами - от кубической до ромбоэдрической кристаллической структуры [2]. Обладая атомным антиферромагнитным порядком, данный оксид относится к группе магнитных полупроводников, имеющих большое практическое значение [3].

Физико-химические свойства крупнодисперсного NiO известны и подробно описаны [4]. Измерение теплоемкости оксида показало, что температура фазового перехода из антиферромагнитного в парамагнитное состояние равна 247 °С. При данной температуре происходит перестройка кристаллической решетки из тригональной в кубическую. В отличие от других оксидов многочисленные измерения магнитной восприимчивости NiO не позволяют точно определить температуру Неля, а в парамагнитной области NiO обладает аномальными магнитными свойствами, удовлетворительное объяснение этого явления отсутствует [3-4].

Цель данной работы - изучение магнитных свойств мелкодисперсного NiO в парамагнитной области.

Экспериментальная часть

Деференциально- термический анализ основного карбоната никеля проводили на дериватографе типа Paulik. По данным ДТА разложение основного карбоната никеля начинается с 330 и полностью заканчивается при 380 °C. В связи с этим оксиды NiO получали изотермическим разложением на воздухе основного карбоната марки ОСЧ при температурах 380, 430, 480, 530, 580, 600, 700 и 800 °C в течение 3 часов. Средний размер кристаллов NiO после прокаливания определяли по ширине рентгеновских дифракционных максимумов на дефрактометре ДРОН 3М Си K_a излучение по формуле Селякова [5]. Электронно-микроскопические исследования проводили на электронном микроскопе ПМ-100 и Электронно-сканирующем микроскопе JOEL 2000.Удельную поверхность измеряли методом БЭТ по тепловой абсорбции аргона. Магнитную восприимчивость χ , как и в работе [6], измеряли методом Фарадея в температурном интервале 20-650 °C. Относительная систематическая ошибка в измерениях χ не превышала 3 %.

Обсуждение результатов

Порошки оксида никеля после прокаливания от 380 до 580 °C имели черный цвет, с повышением температуры прокаливания до 800 °C образцы приобретали серо-зеленый цвет. Яркозеленый цвет NiO приобретал при более длительном прокаливании при 800 °C (100 час).

В табл. 1 представлены размеры кристаллов оксида никеля после прокаливания рассчитанных по формуле Селикова и их средний размер по данным электронной микроскопии, а также их

удельная поверхность, измеренная методом БЭТ и рассчитанная в приближении сферических частии NIC.

Размеры кристаллов (R) и удельная поверхность (S_{уд}) оксида никеля после прокаливания основного карбоната

	- House ilborations concentrate trapecture						
T _{np} , °C	Расчетные данные		Данные, полученные				
	по рентгено	вским пикам	с микроскопа и БЭТ				
	R, A	$S_{\rm ya},{\rm m}^2/\Gamma$	R, A	$S_{\rm ya}$, ${\rm M}^2/\Gamma$			
380	44,8	89,80	25–35	250			
430	57,3	70,25	41–57	210			
480	86,2	46,73	132–144	70			
530	109,2	36,86	173–176	50			
580	109,2	36,86	210-405	30			

Отметим, что средний размер кристаллов, рассчитанный по ширине рентгеновского пика совпадает с данными электронной микроскопии, однако величина удельной поверхности измеренная методом БЭТ значительно выше рассчитанной, что, по-видимому, связано с пористой структурой образцов прокаленных при температурах 380 и 430 °C. Пористая структура последних образцов хорошо видна на снимках с электронно-сканирующего микроскопа.

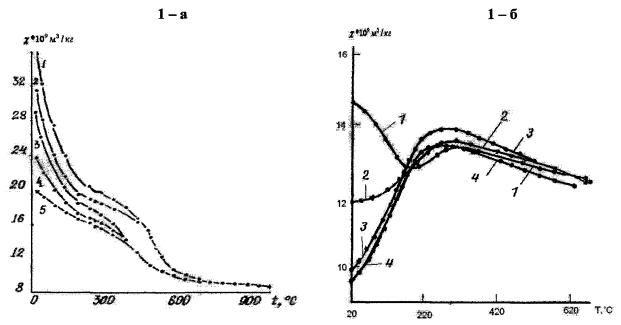


Рис. 1. Температурная зависимость магнитной восприимчивости мелкодисперсных оксидов никеля от температуры прокаливания: a) 1– 380 °C, 2 – 430 °C., 3 – 480 °C, 4 – 530 °C, 5 – 580 °C б) 1– 600 °C, 2 – 700 °C, 3 – 800 °C (3 часа), 4 – 800 °C (100 часов)

На рис. 1 представлены зависимости χ от температуры измерения $T_{_{\rm II}}$ в интервале 25-900 °C. Отметим, что эти зависимости существенно различны для образцов прокаленных до 600 (рис.1-а) и после 600 °C (рис. 1-б).

Характерная антиферромагнитная зависимость χ от $T_{_{\rm II}}$ наблюдаются только для образцов прокаленных после 600 °C. Отметим что, магнитная восприимчивость мелкодисперсного оксида никеля полученного прокаливанием до 600 °C изменяется не монотонно с температурой, зависит от размеров кристаллов и имеет несвойственный для антиферромагнетиков вид. Для этих образцов/-температура измерения и χ -температура охлаждения различны, что указывает на активное спекание кристалликов NiO. Для прокаленных выше 600 °C эти значения в пределах ошибки измерения совпадали.

Аппроксимацию экспериментально наблюдаемых зависимостей магнитной восприимчивости от температуры по уравнению Кюри-Вейсса выше температуры Нееля проводили методом наименьших квадратов. Полученные данные представлены в табл. 2.

$$\chi = \frac{N\beta^2 p_{3\phi\phi}^2}{3k(T+\Theta)},\tag{1}$$

где N — количество ионов Ni^{2+} , $p_{9\varphi\varphi}$ — эффективный магнитный момент Ni^{2+} , который определяется по формуле спина: $p_{9 \phi \phi} = \sqrt{g^2 s(s+1)}$, спин катиона $Ni^{2+} s = 1$, Θ – аппроксимационная постоянная Кюри-Вейсса, k – постоянная Больцмана, β – магнетон Бора, s – суммарный спин.

Аппроксимационные параметры зависимостей $\chi = f(T)$ по уравнению Кюри-Вейсса

для ооразцов	MIO, HOMY TERRIBIA TO	PINOTINISON OCHOBIC	oro kapoonara (7 - Bpe	MA ICHMOINSA	
$T_{\rm np}$, °C	т, час	$p_{ m e\phi}$ Θ		g	
380	3	2,32	4,3	1,64	
430	3	2,32	7,28	1,64	
480	3	2,32	17,34	1,64	
530	3	2,65	221	1,87	
580	3	3,53	727	2,5	
600	3	6,71	5050	4,74	
700	3	6,15	4100	4,35	
800	3	5,61	3363	3,97	
800	100	5,29	2800	3,74	

Следует обратить внимание, что для образцов прокаленных в температурном интервале 380-580 °C значение эффективных магнитных моментов, а также g-фактор катионов Ni²⁺ близки к чисто спиновому. Для образцов прокаленных выше 580 °C значение этих величин значительно больше рассчитанных по формуле спина, что нельзя объяснить с позиции классической теории парамагнетизма. Некоторые авторы предлагают ввести поправку на эффекты не зависящего от температуры парамагнетизма, что может значительно снизить $p_{\theta \phi \phi}$ и Θ [7]. В работе [6] был произведен оценочный расчет этой поправки, показано, что значение ее не согласуется с литературными данными для полупроводников, каким является оксид никеля. Поэтому аппроксимацию эксперементально наблюдаемых зависимостей χ от $T_{\rm u}$ проводили по модели Гейзенберга-Дирака-Ван-Флека (ГДВФ) в приближение двух и четырех взаимодействующих катионов.

В модели ГДВФ энергия взаимодействия ионов определяется уравнением

$$E = -J \left[s'(s'+1) - 2s(s+1) \right] + D \left[M^2 s' - 1/3s'(s'-1) \right], \tag{2}$$

где J – параметр обменного взаимодействия между катионами Ni^{2+} , D – параметр расщепления энергетических уровней в нулевом поле, s' – суммарный спин взаимодействующих ионов, $M_s = s'$; s'-1; ...-s' – проекция суммарного спина.

В приближение парного обменного взаимодействия магнитная восприимчивость описывается уравнением

$$\chi = \frac{N\beta^2}{3\kappa T}g^2 3xy \frac{1 + x^2(1 + 4y^3)}{1 + x(1 + 2y) + x^3(1 + 2y + 2y^4)}$$
(3)

где g – фактор спектроскопического расщепления, $y = \exp(-D/\kappa T)$, $x = \exp(2J + 2D/3)/\kappa T$.

Зависимость χ от $T_{\rm u}$ в приближение четырех взаимодействующих ионов имеет вид:

$$\chi = \frac{N\beta^2}{3\kappa T} \cdot g^2 \cdot 0.75 \cdot \frac{x^{10} \left(16y^{16} + 9y^9 + 4y^4 + y\right) + 3x^6 (9y^9 + 4y^4 + y) +}{1.5 + x^{10} (y^{16} + y^9 + y^4 + y + 0.5) + 3x^6 (y^9 + y^4 + y + 0.5) +}{\frac{+6x^3 (4y^4 + y) + 6xy}{+6x^3 (y^4 + 0.5) + 6x(y + 0.5)}}$$
(4)

По данным [8] значение D для NiO заключено в пределах — 30 до 30 К. Знак определяет направление деформации элементарной ячейки NiO.

В табл. 3 представлены параметры д и Ј, соответствующие максимальному коэффициенту корреляции для уравнений (3) и (4). Анализ данных табл. 3 показывает, что коэффициенты корреляции, рассчитанные по модели ГДВФ выше чем по уравнению Кюри-Вейсса. При увеличении количества взаимодействующих катионов в модели в 2 раза обменное взаимодействие между катионами уменьшается также приблизительно в 2 раза, однако g-фактор Ni^{2+} возрастает. В [8] указывается, что экспериментальная величина g-фактора катиона Ni^{2+} не превышает 2,50. таким образом, наиболее вероятно, что зависимость χ от T для NiO в парамагнитной области описывается уравнением (3).

Таблица 3 Аппроксимационные параметры уравнений (3) и (4) для образцов NiO, полученных термолизом основного карбоната

T, °C	τ, ч	Урав- нение	D=0, K		D = -30, K		D = 30, K				
;			J	g	R	J	g	R	J	g	R
600	3	(3)	-310 -140	2,51 2,64	0.941 0,951	-310 -150	2,46 2,61	0,944 0,946	-300 -135	2,51 2,66	0,951 0,953
700	3	(3) (4)	-300 -135	2,48 2,60	0,968 0,975	-300 -145	2,43 2,58	0,969 0,972	-290 -125	2,49 2,63	0,975 0,976
800	3	(3) (4)	-280 -125	2,39 2,54	0,985 0,988	-280 -135	2,38 2,51	0,981 0,988	-270 -115	2,40 2,57	0,986 0,988
800	100	(3) (4)	-270 -130	2,39 2,54	0,986 0,980	280 -140	2,34 2,51	0,983 0,979	-260 -120	2,40 2,56	0,985 0,981

Выводы

Методом магнетохимического анализа исследовали магнитные свойства NiO, полученного термолизом основного карбоната никеля.

Показано, что магнитная восприимчивость образцов прокаленных при $T \leq 600$ °C не монотонно изменяется от температуры $T_{_{\rm II}}$ и обладают суперантиферомагнетизмом. У образцов термообработанных выше 600 °C наблюдается лямдообразная зависимость магнитной восприимчивости от температуры.

Математическая обработка результатов показала, что экспериментальные зависимости χ от $T_{_{\rm II}}$ в парамагнитной области описываются не законом Кюри-Вейсса, классическим для антиферромагнетиков, а уравнением, полученным в рамках модели Гейзенберга-Дирака-Ван-Флека в приближении парного обменного взаимодействия.

В связи с этим предполагается, что в парамагнитной области локально между катионами никеля в NiO сохраняются достаточно сильные обменные взаимодействия. Оценены значения дфакторов и параметры обменного взаимодействия Ni^{2+} – Ni^{2+} в NiO с учетом расщепления энергетических уровней в нулевом поле.

Работа выполнена при поддержке ректора ЧГПУ Латюшина В.В.

Литература

- 1. Гладков, В.Е. Магнитные свойства мелкодисперсной закиси никеля /В.Е.Гладков. Г.В. Клещев // Вопросы физики твердого тела ЧГПУ. 1976. № 6. С. 68-75.
- 2. Характеристики нанопорошков оксида никеля, полученных электрическим взрывом проволоки. / Ю.А. Котов, А.В. Багазеев, И.В. Бекетов, А.М. Мурзакаев и др. // Журнал технической физики. 2005. Т. 75. Вып. 10. С. 39-43.
- 3. Гладков, В.Е. Физико-химическая природа аномалий парамагнитных свойств моноксида никеля / В.Е. Гладков, В.М. Березин, Е.А. Кучумов // Вестник ЮУрГУ. Серия «Математика, физика, химия». 2008. № 7. Вып. 10. С. 36-41.
- 4. Термодинамические свойства индивидуальных веществ: химический справочник / под ред. В.С. Иориш // М.: МГУ, 1985 2004 гг, режим доступа к справочнику http://cheni.msu.su/rus/tsiv/.
- 5. Уманский, Я.С. Кристаллография, рентгенография и электронная микроскопия / Я.С. Уманский, Ю.А. Скаков, А.И. Иванова, И.Н. Расторгуев // М.: Металлургия, 1982. С. 632.
- 6. Викторов, В.В. Магнитные свойства NiO полученного термолизом карбоната никеля / В.В. Викторов, А.А. Фотиев, В.Е. Гладков // Неорганические материалы. 1987. Т. 23, № 5. С. 807-811.
- 7. Смарт Дж. Эффективное поле в теории магнетизма / Дж. Смарт; пер. с англ. Мир, 1968. 371 С.
- 8. Биядерные хилаты двухвалентного никеля с изометилами β -карбонильных соединений / А.В. Хохлов, В.П. Курбатский, А.Д. Гарновский и др. // Координационная химия. 1980. Т. 6, № 9. С. 1448.

MAGNETIC PROPERTIES OF THE FINE-DISPERSED NIO IN PARAMAGNETIC STATE

The authors made a magnetochemical analysis of the fine-dispersed nickel oxides derived by means of thermolysis of the basic carbonate within the temperature range 380-800 °C. They proved that specific dependence of the magnetizability χ on the temperature determination presents for the samples annealed above 700 °C.

Keywords: magnetic properties, fine-dispersed systems, Heisenberg-Dirac-Van Veick model.

Sericov Alexander Sergeevich - Post-Graduate Student, Natural Sciences and Mathematics Department, Chelyabinsk State Pedagogical University.

Сериков Александр Сергеевич - аспирант, Челябинский государственный педагогический университет.

e-mail: 7243201@mail.ru

Viktorov Valery Viktorovich - Dr.Sc. (Chemistry), Professor, Head of the Natural Sciences and Mathematics Department, Chelyabinsk State Pedagogical University.

Викторов Валерий Викторович - профессор, доктор химических наук, Челябинский государственный педагогический университет.

e-mail: viktorowv.cspu@mail.ru

Gladkov Vladimir Evgenievich - Cand.Sc. (Chemistry), Associate Professor, Instrument Production Techniques Department, South Ural State University.

Гладков Владимир Евгеньевич - доцент, кандидат химических наук, кафедра Технологии приборостроения, Южно-Уральский государственный университет.

Kolmogortsev Alexey Michailovich - Post-Graduate Student, Chemistry Department, Chelyabinsk State Pedagogical University.

Колмогорцев Алексей Михайлович - аспирант кафедры химии, Челябинский государственный педагогический университет.

e-mail: alex-kolm@ya.ru