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In this paper we consider a problem of two bodies bonded through a thin adhesive
layer (a third material) of thickness d. Leting § go to zero, one obtains a boundary value
transmission problem set on a fixed domain. We then give new results for the study of this
problem in the framework of Hélder spaces: an explicit representation of the solution and
necessary and sufficient conditions at the interface for its optimal regularity are obtained
using the semigroups theory and the real interpolation spaces.
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Introduction

Consider the boundary value and transmission second-order operational problem

[ («®)" (z) + Au® (2) = ¢° (&) on ]—1,0[U]0,6[U]5,1 + 4
7{5 ()—1) = J-
u’ /(1 +0)=r+
(£5) u (07) /: w0 (0+) T Oé(S’/ w0 (67) = u® (5+) 4 55 (1)
p— () (07) = po () (0F) +a’
L 2o (©0) (67) = py (u) (67) + 07,

set in some complex Banach space E; here A is a closed linear operator of domain D(A) C
E (not necessarily dense in E) which verifies the Krein’s ellipticity condition (see Section 2,
(16)) f-, fy, a% B° a° b° are given in E and satisfy some necessary and sufficient
conditions which will be specified later.

The function ¢° is such that

9- =9¢"l-1.0 € C"([-1,0]; E)
90 =9l € C7([0,0]; E)
9% =¢|is119 €CT([6,1+6]; E),

(with 0 < 7 < 1). It is not difficult to prove that the holderianity of g_, g5 and g5 imply
the global hélderianity of ¢° on [—1,1 + ] if and only if
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9-(0) = g(0) and gj(6) = g.(d).
We do not assume these two conditions.
Set
B B 5 B P h)
U_ =Uj—10 Yo = Yjo,sy Ut = YUs,1+6]

then problem (Pj) writes

_(z) on ]—1,0[
() on ]0,6|
;L?E)” (2) + Aul (2) = g, (+) on 15,1+4],

p- ()" (0) = po ()" (0) +a”
\ po (uh) (0) = py (ud) () +0°.

The numerical solution of this problem is usually very difficult to compute. In fact,
the small thickness of the thin layer generates difficulties in the meshing. As § — 0, the
interval |0, 0] degenerates into the point {0} and we can no more have an equation on it.
The interval |0, + 1] becomes |0, 1].

Therefore, the main question is: what will be the appropriate transmission conditions
at the interface point {0} which describe correctly the effect of the thin adhesive layer
10,6[ as § — 07

We will answer formally to this question in the most interesting case, characterizing
so the effect of the small bond |0, 4] (as § — 0).

Let us begin by giving a formal derivation of the effect of the small bond ]0,d[ (as
J — 0).

In order to deal with our problem (Ps), we solve the scalar equation on the small
interval |0, d[ and write down relations between the Cauchy data

(wd(0), () () and  (u§(0), (uh) (3))

Then making use of the transmission condition at {0} and {6}, we will deduce relations
linking

! (4.0) 1 (43) @)

which allow us, as § — 0, to obtain the limiting transmission conditions at {0}. Therefore,
we will see that the interesting limit problem writes in the form

(u-)" (2) + Au_ (z) = g- (z) on ]-1,0[

(wy)" (z) + Aw, (2) = hy (z) on ]0,1]
(Pra) § uw(=1) =/, (wy) (1) = fy

u-(0) = wy (0) + ¢

p- (u=)"(0) = py (wy)" (0) = gAu_(0) + ¢,
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see the details in Subsection 1.1.
Our main results concerning problem (P;4) are summarized in the following Theorem.

Theorem 1. Letg_ € C"([-1,0]; E), hy € C"([0,1]; E) with0 <n <1 and f_ € D (A),
fr € D((—A)'?), ¢ € D(A), ¥ € E. Assume (16), see below. Then problem (Py) has a
unique solution

{ u_(z):]—1,0— FE
wy(z):]0,1[— E

such that

1. u_ € C([-1,0]; D(A)) N C*([-1,0]; E), wy, € C([0,1]; D(A)) N C?*([0,1]; E) if and
only if
(*S) { Af, - g- (_Dim
(—A)'2f. € D(A)

w9000 € DO

2. Au_(.), u” € C"([-1,0]; E), Awy(.), w € C"([0,1]; E) if and only if

e { (ks Q)€ Patr0
(—A)2f, € Da(n/2,+0)
(* *T‘) { qg*(o) +¢ € DA (77/27 +OO)
hy(0) —g_(0)+ Ap € Da(n/2,4+0) .

In this main result, note that (xs) and (x % s) are respectively the necessary and
sufficient compatibility conditions at the boundary and the necessary and sufficient
compatibility conditions at the interface {0} to obtain a strict solution u = (u_,w,).
Similarly, (xr) and (% * ) are those to obtain optimal regularities on u.

The definition and the properties of the interpolation space D4 (n/2,+00) are given,
for instance, in ( [1])

Many authors have worked on analogous problems, see [2-4] in hilbertian spaces.
In [5,6], a study is given for a similar problem respectively in the framework of Holder
spaces and LP-spaces. These two last studies have considered only two materials. In our
work we will use some techniques of these approachs which are based on the theory of
semigroups, the Dunford functional calculus and the interpolation spaces.

This paper is organized as follows.

In Section 1, one gives the formal calculus for the limiting transmission problem and a
concrete problem which motivates our study. In section 2, we give the basic hypothesis and
some technical lemmas useful to the study of our problem (P;4). Section 3 is devoted to
the derivation of an explicit representation of the solution of (P 4). In Sections 4 and 5 we
study the solution and give in addition necessary and sufficient compatibility conditions
on the data in order to obtain the above Theorem. In a last Section 6, we go back to the
main physical example given in Subsection 1.2 and apply our results in the case of the
space B = CJ(Q) of the S-Holder continuous functions vanishing on the boundary <.
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1. Formal Derivation of the Limiting Effect of the Thin Junction
1.1. Derivation of the Transmission Conditions

In order to have an idea at least formally of the limiting problem, let us first consider
the case when operator —A is replaced by a complex scalar —z (with z € C\R,) and for

the simplicity
gno 5 = 0
a’ =B =a’ =0 =0.

Define functions w, and hy on the fixed intervall 0, 1[ by
wi(e) =6+ a),  ha(e) =6 +a).

For simplicity, we have supposed that these functions do not depend on 9.
The equation on the intervall |0, 5[ writes

(ug)// + zud = 0,

which gives
ud(x) = CLe V=" 4 CheV=2072)

where C'; and C5 are constants to be fixed by the boundary conditions. We thus have

(0) = —Ol\/—_Z‘l‘ Cy —267\/?6
(ud)" (0) = —C1y/—ze V=2 + /=2Cs.

p- (u2)"(0) = po (uf) (0)
Po (Ug) (0) = ps (Ui) (0) = py (w+)' (0),
lead to
2e V=0 2w, (0) = (1 + 6_2‘/_7‘5> —2u® (0) + (1 — 6_2\/_75) % (u‘s_)/ (0), (2)
and
Pt —v=25 (0 V() = (1 — e=2V"20) /=20 p— 2=\ () (0).
22! (w.) (0) = (1 RN ) @) ©). @)

These two last relations link the Cauchy data (w,(0), (ws) (0)) (at the interface {0}) of
the function w, (defined on [0, 1]) to the Cauchy data <u‘5_(0), (u‘s_)/ (O)) (at the interface

{0}) of the function u® (defined on [—1,0]).
The limiting transmission conditions as 0 — 0, which are obtained from the analysis
of (2) and (3) depend on the behavior of p_, py and p, with respect to . So we must
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assume some conditions on p_, pp and py. The most interesting case we will consider is
the following

p_ and p, are independent of § and py = %, (4)

where ¢ is a fixed positive number.

This problem may model an electrostatic potential u’ in an heterogeneous material (see
next subsection). The heterogeneity of the material is translated by the discontinuity of the
conductivity coefficient p. In this situation the small bond is highly conductive, implying
thus the continuity of the potential through the sheet, but the normal component of the
electric induction field is no longer continuous through the interface {0}, it has a jump
proportional to the potential at {0}. In that case one has

1 o
(1 — 6_2\/;5) — = (1 — 6_2\/_7‘5> -—=0 as §6—0,
Po q
Do (1 — 6_2\/_76> = % (1 — 6_2\/?26) — 29V —z as d — 0,

and then the limiting transmission conditions are

{ w(0) = u_(0) ,
P+ (1) (0) = qv/=2v=2u_(0) + p- (u-)"(0),

and the limiting scalar problem becomes

(
(Prz) § w(=1) =/ (wy) (1) =fy (5)

p-(u-) (0) = py (1) (0) = qzu_(0).

Remark 1. Another interesting case is when p_ and p, are constant with respect to
0 but py = dq. In that case the small bond is not sufficiently conductive, implying thus
a jump of the potential at {0}, but the normal component of the electric induction field
remains continuous through the interface {0} and it is proportional to the jump of the
potential at {0}. In that case, one has

1 1 1

(1—6_2*/_75) — = (1—6_2‘/_75> —5—>2—\/—z aso—0,
Do q q

Do (1 — e’2ﬁ5> = qo (1 — e’Qﬁ‘s) —0 as 0 —0;

and then the transmission conditions are

{200 =010+ fu Y 0
pi (w2) (0) = p- (u-)' (0).

The limiting problem becomes

(u-)" (&) + Au_ (2) = g (x) on ]—L,0]
(1) () + Aw, (z) = hy () on J0,1]
w(=1) = f-, (wy) (1) = .

p- (=) (0) = q (u(0) — w (0)) = ps (wy)' (0)).
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In the general case where the data gﬁo 5 o, 3, a® and b° are different from 0, one

obtains the following relations between (w.(0), (w;) (0)) and <u5_(0), (u‘s_)/ (O))

2~V /—zw, (0) =
= (14 e273) V=2 (0) + (1= e V) 2= (1) (0) + ¢ (gl 0% 8,0 ©)

and
27V (w, ) (0)2 =

= <1 — e VR /2l (0) + <1 + 672‘/TZ5> (u‘s_)/ (0)%= + ° (960,5[7 al,al, b5> : (7)

where

@6 <gﬁ07§[7 0567 /667 CL5> -
_ (1 _ 6—2\/—75> foé e~V gl (5) ds — (1 _ 6—2\/—75) ( 2ol & ;_Z) _ 0/ —ze Vg

and

0 (o ) -
= (1—6*2F5>f e V=gl () ds + (1—6*2\5‘5) (x/—_zoz + 2 ) —t

When we assume (4), we obtain the following limiting scalar problem with non
homogeneous transmission conditions

(u_)" (&) + 2u_ (2) = g— (&) on ]—1,0]
(w)" (@) + 2w (2) = hy () on J0,1]
(P){ w(=1)=f, (wy) (1) = fs (8)

where
— lime® (ol § pb b i (o RN
P = dmy (g|]0,6[7a B80,a%), Jli%w (g‘]075[,04 ,a, b))

Therefore, in this work we will focus ourselves on the complete analysis of the following
problem
()" (&) + Au_(x) = g (z) on ]-1,0]
(wy)" (x) + Awy (x) = hy (z) on ]0,1]
(Pa){ u(=1) = £, (wy) ()= fs (9)
u—(0) = w(0) + ¢
p— () (0) = ps (w) (0) = gAu_(0) + .

1.2. Electrostatic Potential in a Heterogeneous Cylinder

Consider the cylinder G° = ]—1,1+d[ x Q constituted by the junction of two
homogeneous cylinders G_ = ]—1,0[ x © and G° = 15,1+ 6[ x Q bonded together by
the thin cylinder G3 = ]0, 5[ x 2 (here Q is a bounded domain of R", n > 1, with a regular
boundary T'). Denote by (x,y) the generic variable in G°,

Bectauk FOYpI'Y. Cepusa «MaTtemaTudecKoe MoJejinpoBaHUe 55
u nporpammupoBanues (Becruuk FHOYpI'Y MMII). 2015. T. 8, Ne 4, C. 50-75



A. Favini, R. Labbas, K. Lemrabet

The transmission problem

V. (qu5) = pg® in G°
u‘5:00n |-1,140[xT
u’ = f_ on {—1} x Q (10)
oud
a“ — f,on {148} xQ,
models an electrostatic problem in G°. The function u° is the electrostatic potential, —Vu°
is the electric field and —pVu® is the electric induction field. The heterogeneity of the
material is translated by the discontinuity of the conductivity coefficient p :

p—in |—=1,0[ x Q
p=1< poin ]0,d] x
pyin 16,1+ 8] x Q.
where p_, po and py are positive constants. The function g is a given electric density, f_
is a fixed surface potential and f, a fixed surface induction.

Set 5 5 5
U— =10 9- = 91,00
o _ ,,0 ) )
Uo = o8> 90 = 9jjo,5»
6 _ ,,0 ) )
Uy = U546 9+ = 915146

then, the equation
V. (qu‘S) =pg° in G°,
is equivalent to the following equations
Au? =g in |-1,0[ x Q
Aud = g§ in 10,4 x Q (11)
Au’ =g in 10,1+ 6] x ,
with the transmission conditions
(u® =udon {0} xQ
u) =ul on {6} x Q
\ p(‘)au —pO%i on {0} x 2 (12)
pog(;uo —p+a; on {4} x .

Let us define the functions wy, hy on the fixed domain |0, 1] x Q by setting
w+(x,y)ZUi((5+a:,y), th(.T,y) :gi(5+x7y)7
where we have assumed, for simplicity, that they do not depend on 9.

0
The approximations for u(z,.) andﬂ(a:, ) as § — 0, give

ox
ou 52 0%u
up(8,y) = up(0,9) + 0720, y) + 5 532(0,9) =
0u 52
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oul oul 0*ul oul
a—;(& y) ~ a—;(O,y) +6 8x20 (0,y) = a—;(O,y) — & (Ayud — g0) (0, ).

Using these relations with (11) and (12), we get the following problem set on the fixed
domain (not depending on 4):

Au_=g_in |-1,0[ x Q
(EQS) { Aw, = hy in ]0,1] x Q, (13)
under the boundary conditions
u-=0on |-1,0[x I
wy =0on ]0,1[ x T
(BC)S u_=f on {-1} xQ (14)

ow
p+6_x+ = f+on {1} x €,

and the following transmission conditions (depending on ¢)

2
Wy = u_ +6&% - (Ayug — go) on {0} x Q
(TO) Po ox 2
owy ou_

P+ =P~ dpo (Ayu_ — go) on {0} x €,
which model the effect of the thin cylinder ]0,d[ x © on the other parts of the cylinder.
The thin cylinder |0, d] x €2 is modelled by the sheet {0} x © and its effect is modelled
through these transmission conditions.

There are two limiting cases of particular interest. The first case is

p:g
0 67

(q is a positive constant) which is considered in this work assumes that the thin layer is
highly conductive; as ¢ goes to 0, we obtain

wy =u_ on {0} x Q

Ow ou_ (15)
Pig =P-5, 1 (Ayu- +go) on {0} x €,

which corresponds to the fact that the potential is continuous through the sheet, but the
normal component of the electric induction field has a jump proportional to the potential.

The second case is pp = ¢é and corresponds to the fact that the thin layer is poorly
conductive. We get, as ¢ goes to 0:

1 Ou_
w+:u_+5p_au—x on {0} x €,

ow,. u_
=p_ on {0} x Q,
P+ o p or {0}
here, the normal component of the electric induction is continuous through the sheet but
the potential has a jump proportional to the normal componant of the electric induction
field.
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Therefore, using the classical operational notations

u(2)(y) = u-(2,9), wy(z)(y):=wi(2,y),..
the concrete problem (13), (14), (15) writes exactly in the form (9) with
Y =qgo and p =0
and

{ D(A) ={veW?(0,1):v(0) =v (1) =0}
Av (y) =" (y)

in the case £ = L? (0,1), or

Av (y) =v" (y)

in the case £ = C'[0,1].

{ D(A) = {ve?0,1]: v (0) = v(1) = 0}

2. Hypotheses and Technical Lemmas

We assume in all this work the following ellipticity hypothesis:

for any 6 € |0, 7 p(A) D Sz—p U {0} and

_ C 16
3C > 0: VA€ SrgU{0} |(M —A) 1HL(X)<1+W (16)

where o (A) denotes the resolvent set of A and
Sp={z€ C\{0}: |argz| <6}. (17)

This assumption implies that there exist a ball B (0,ry), ro > 0, such that

Q(A) OB (07T0)7 (18)

and the estimate in (16) is still true in S;_g U B (0, 10).
It is well known that the above assumption implies that the square root v/—A is well
defined and B = —v/—A generates an analytic semigroup

(¢™) s (19)

which is not necessarily continuous at 0.
Let us recall the following important properties of B proved in [7].

Lemma 1. Let ¢ € E and x € C"([0,T]; E) with T > 0. Then

1. B — ¢ as € — 07 iff ¢ € D(B) = D(A), (see [7, p. 20, Proposition 1.2]),

2. &£ eBp e O([0,T],E) iff ¢ € Dg(n;+00) = D4 (n/2;+00), (see [7, p. 29,
Proposition 1.12]),
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J. & = nge(fft)B [x (t) = x (Q]dt € C"([0,T],E) N B(0,T; Dp (n;+0)), (see [7,
p. 53, OTheorem 4.5]).

Let 6 €]0,7/2[ and set
S(ro,0) = {z € C\ {0} : |z| = rosinf and |argz| < 0} .
Note that for all w € S(ry,0), one clearly has
Re w > rgsiné. (20)

We will also use the following result proved in [6, p. 1880, Proposition 4.10].

Lemma 2. For any w € S(ro,0), one has
1. |larg(1 —e™™) —arg (1 +e ™) <6,

2. |1 + e‘w| >Cyp=1—e 2tand > 0,

Re w rosind

3 |1 —e v > > — =
| c ‘_1+Rew 1+ rgsin® “

Now, consider the following space
H>(S(ro,0)) = {f : f is an holomorphic and bounded function on S(r¢,0)},

then, under our assumptions on A, if f € H*®(S(ro,6)) is such that 1/f € H>(S(ro,0))
and (1/f)(—=B) € L(X), then f(—B) is invertible with a bounded inverse and

[f(=B)] ™" =(1/f)(-B),

see, for instance [8] or [9, p. 45, Remark 2.5.1].

On the other hand we recall that operator I —e?? and I+ e2?? are boundedly invertible;
see for instance |10, p. 60, Proposition 2.3.6].

Let us now apply this result to the following operator

A,=1- %B‘l (I—eP) (T +eP) - %*B—l (T+eP) 7 (1—eP).

Lemma 3. The operator A, : E — E is boundedly invertible.

Proof. Let 0 < 6 < m/2. Consider the function f

P 1 + e—2w o 1 — €—2w
qwl —e 2w  quwl+e 2w

flw)=1+

It is clear that f and 1/f are well defined and holomorphic on S(rg,#) in virtue of the
above Lemma. The function f is clearly bounded on S(rg, ). Moreover there exists C' > 0
such that for all w € S(rg,6) one has
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p_l4+e? pl—e 2 C
qul—e2v  quwl+e2v| = |w|
Therefore one can find xy > 0 such that
p_l4+e? pl—e 2 < 1
qwl—e™2v  quwl+4+e2w|— 2

for w € S(rgp, ) with Re w > w4; consequently

w

p_l4+e? p,l—e?

—_ 21
qwl—e2v  quwl+e 2w (21)

sl = i+

1 p_1l+e? p l1—e2
qwl—e2v  quwl+e 2w

w

v

> 1/2

for w € S(ro,0) with Rew > xp.
In the compact sector

K,, = {w € C\ {0} : rysinf < Re w < my and |arg(w)| < 0},

there is at most a finite number of roots of f(w) (not belonging to [0, xy]), (see [11, the
remark on Proposition 4.1 | p. 41]); so there exists 6* €]0,6] such that f(w) does not
vanish on

Yo = {w € C\ {0} : mosinf < Re w < xp and |arg(w)| < 6%} . (22)

From (21), we conclude that f(w) does not vanish on S(rg,6*). Hence f € H>(S(ro,0")),
1/f € H*(S(ro,0%)) and consequently (1/f)(—B) € L(X) and

A, =f(-B)=1- %‘Bl (I—eB) " (1 +eP) - %Bl (I+¢28)7" (I - 2P)

is boundedly invertible.

O
3. Representation of the Solution of (P,)
It is well known that, the solution of the second order following equation
u’(z) = B*u(z) = g(x), v €la,b|
in F, writes
u(w) = " Pa + 7B 40 (g) (2)
with o, 8 € E and
T b
1 1
v(g) (z) = 5 /e(mt)BBlg (t)dt + 3 /e(tx)BBlg (t) dt.
60 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming

& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 4, pp. 50-75



MATEMATNYECKOE MOJIEJINPOBAHUE

Therefore

u- (z) = e Pa_+e"IPE (g )(z), xe€l—1,0]
wy (2) = e Pay+e" PP 40 (hy)(z), x€0,1]

with a_,5_, a4, B+ € F and

T 0
1 1
v(g-)(z) = 5 /e(xt)BBlg (t)dt + 3 /e(t”)BBlg (t) dt,
1 T
1 [ 1
v(hy) (@) =5 / e VERTIh, () dt + 3 / DB Rn (1) dt.
0 T

The boundary conditions

{ u- (—1) = efa +5 +v(g-) (=1) = f-
w’ (1) = Be Pay — BB, + ' (hy) (1) = f4,
give
572_6 04,—21(9)( 1)—|—f, (23)
By =ePay +B W (hy) (1) = B~ fy;
and the transmission conditions
{ u—(0) = wy (0) + ¢
p- (u-)"(0) = ps (w4)" (0) = gAu—(0) + ¥,
give
a_+ePB_ —a, —eBp,
= —v(g-)(0) +v(hy)(0)
p- (—a-+ePB) —pi (o — €PB1) +qB (a- +e"p-)
= —p-B~'(g-) (0) + p+. B~ (hy) (0) — ¢Bv (g-) (0) + B~ .
Using (23), one obtains the system
(]—623) a_ — (I—i—eQB) ay =F, 94
o (I+ ) 4 qB (I - )] a- —py (I — ) ay = G, (24)
where
([ FL=p—eBf —ePB™ f +ePu(g-) (—1)
—v(g-) (0) + "B~ (hy) (1) + v (hy) (0)
G, =B W —(p_+qB)ePf + p.ePBf, (25)
+(p- +4B)ePv(g-) (1) = py "B~ (hy) (1)
| —p-B7'(9-) (0) + p+ B~ (hy) (0) — ¢Bv (g-) (0) .
The abstract determinant of this system (acting on D(B)) is
A(B) = (26)
=py (I — 623) (I — 623) — (I+e2B) [—p_ (]—I—e2B) +qB (] — GQBH =
—ps (I =) 4 p_ (I +¢P)" —qB (I - &*P) (I +¢°P).
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One has
A(B):D(B) - E

with

—A(B) = —p+([—62B>2—p_([+€23)2+qB(I—623) (I+¢°P)
= qB([—eQB) (I—i—ew)

I— %B‘l (I—eP) " (T +eP) - %B‘l (I+eP)7H (I = e2P)
=qB (I — 62B) (I+ 623) A,,

which is boundedly invertible by Lemma 4. It follows that

a_=[AB)] " [py (I —*P) F — (I +*P)G.], (27)
ap = [A(B)]_1 [(—p, (I + 623) +¢B (I — 623)) F, — (I — 623) G*] , (28)
and then
b= P AB] " ps (I ) B (14 ¢P) G —v(g ) (~) + f. (29)
By =e BIAB) " [(=p- (I +€*P) +¢B (I —€*P)) F. — (I - e*P) G.] (30)
BN (hy) (1) — B,
Therefore, the functions
u_ () =e*Pa 4IP3 fu(g)(z), € -1,0|
Wy (l’) =c $B05+ + e(l_x)BﬁJr +tv (h‘+> (iIZ’) ) Z 6]07 1[
with
1 [ w
v(g-)(x) = 5 /e(m_t)BB_lg_ (t)dt + 5 / eOBB=ly (1) dt
—1 T
and
1 [ 1
v(hy)(2) =35 / e@OBR=L (1) dt + 3 / OBy () dt
0 T
are completely determined.
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4. Analysis of v(g-) and v (h;) and Their Derivatives
4.1. Analysis of v(g-) on (—1,0)

One has
v(g) (@)
=5 [ B g ) g @t [ IPE g (1) - g (o) d
4—%/6(9C DEp-lg (z) dt+%/e<t—£)BB_1g_ (x)dt
=5 B g - gt [P g (1) - g (o) d

and
v(9-) ()
=5 [ B g @ - g @t g [P g (1) - g (o) d
5B (g (@) g (<1)] 4 ge P B2 g (1) — g (0)] - B (2)
e BB g (21) 2 PB g (0) = va(9-) () + vs 1 (9-) (2) + vs0 (9) (@),
where

vs1(9-) (1) = e PB g (~1); wsg (o) (x) = 5o "B (0).

Due to Lemma 1, vg (¢g—) has the following maximal regularity properties

vr(9-) € C([-1,0[; D (B?))
B?vg (9-) € C"([-1,0]; E),

while for vg_; (9-) and vgo (¢9-) (z) we only have

vs1(9-) € CO-1,01: D (B2); Bus 1 (g-) € C(] —1,0; E)
vso(g-) € C(1=1,01 D (B2); BPugo (g-) € C7([-1,0(; E).

The behaviour of B?vg 1 (g_) () in the neighbourhood of —1 is that of

1
5¢ g (1), (31)
and the behaviour of B?vgq (g_) (x) in the neighbourhood of 0 is that of
1
56(”1)39_ (0). (32)
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4.2. Analysis of v(hy) on (0,1)
Recall that

xT

1
1 1
v(hy) (@) = 3 / @ VBp=h, (t)dt + 3 / OBBTL (t) dt,

0

which can be written as

v(he) (2)

- %/ E=DBB~Y [hy (1) — hy(2)] dtJr%/e(t_:”)BB_1 [y (8) = hoy ()] dt
+%e$33—2h+(x) + %e“—@BB—?hm) = B7hy ()

=5 [ B e 0~ b e+ g [ IPB () - he(o)de

B (@) + 2o B [ x) — by (0)] + 5P B 2 (@) — b (1)
+%emBB‘2h+(0) + %e(l_‘”)BB‘Qth(l) — on (hy) (2) + vso (hs) (&) + vsa (he) (2)

with
1 1
vsp (hy) () = §€$BB_2h+(0), vsa (hy) () = 56(1_@33_2}%(1)- (33)

Due to Lemma 1, vgo (hy) has the following maximal regularity properties

vr (hy) € C([0,1]; D (B?))
B?vg (hy) € C"([0,1]; E),

while for vgg (h4) and vs; (h4) we only have

vso (he) € C(10,1]; D (B?)); B?vso (hy) € C7(]0,1]; E)
vs (hy) € C([0,1[; D (B?)); Bvsa (hy) € C'([0,1[; ).

Remark 2. We have in view the study of the regularity of u_ on [—1,0] and w, on [0, 1].
Since

u (1) = ePa_+ BB 4 u(g) (2), x€]—1,0]
wy (1) = e Pay+e" P8 +o(hy)(z), = €01
the singular parts vs 1 (9-),vs0(9-) ,vso (h4+) and vg1 (hy) must be associated with the

other singular parts of u_ and w, to find necessary and sufficient conditions on the data
0,0, f—, f+,g- and hy in order to get optimal regularity for u_ on [—1,0] and wy on [0, 1].
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4.3. Analysis of the Derivatives

In order to study the regularity of the solution of our problem, we also need to analyze
the behaviour of the derivative of v (¢—) and v (hy). We have, for all x € |—1,0]

Vg @) = 5 [ tde-

-1

2

N | —

0
. 1__ 1 __
[ e+ 387 () - 5B (@)

= %/e(x_t)Bg_ (t)dt — %/e(t_x)Bg_ (t) dt,
then
Vg0 = 5 [P @di=5 [Pl - g Nde+ g [ )
-1 1 r tB -1
= 3B O [Pl @) - g (O)di =3B (0)+ R (g) O

v () (2) = 3 / OB h, (fydt — + / B (1) dt,
then
V(h)O) = — / Ohe () dt = 5By (0) — / B (I (t) — hy (0)]dt
= LB (0) 45, (1) 0).
and
v (hy) (1) = %B_1h+(1)+%/6(1_03 [y (8) — hy (1)] dt (34)
= LB (1) 5. () (1),

5. Study of the Regularity of the Solution of Problem (P 4)
5.1. Necessary Conditions on the Transmission Data

Assume that u_ and w, are strict solutions, that is

u_ € C([~1,0]; D(A) N C*([~1,0; E) and w, € C([0,1]; D(A)) N C?*([0,1]; E),
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then
o = u_(0) = w,(0) € D(A),

and for any 7y € [—1,0]

one has

(u-)"(0) = g-(0) = Au_(0) = g-(0) — Ap — Aw,(0) = g-(0) — Ap — h4.(0) + (w)" (0),

from which we deduce the first following necessary compatibility condition

hi(0) = g-(0) + Ap = (w4)" (0) — (u-)" (0) € D(A). (35)

The second transmission condition gives

p— (u=) (0) = ps (w3) (0) = ¥ + qAu_(0) = ¢ + ¢ [Au_(0) — g-(0)] + q9—(0) € D(A)

which implies the second following necessary compatibility condition

p- (u=)"(0) = ps (w4)" (0) — g [Au—(0) — g-(0)] = ¥ + q9-(0) € D(A). (36)

The two conditions (35) — (36) are equivalent to

{¢+qg(0)€ 4
U+ q[h+(0) + Ap] € D(A),

due to the identity

L1+ g9 (0)) € D(A).

h4(0) = g-(0) + Ap = -y

1
p [ + g1 (0) + ¢Ag]
In the case ¥ = 0 and ¢ = 0, the necessary conditions on the transmission data are

9-(0) € D(A), h(0) € D(A).
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5.2. Analysis of u_ (z) Near —1
Assume the necessary condition f_ € D (B?) = D (A). Recall that

u_ () =ePa_+ eI 1o (g)(2),
where, due to (23), one has
B = —cPa —v(g-)(~1)+ f-.
Then the behaviour of B*u_ (z) near —1 is the same as that of the function

B [y () (~1) + f] + B (g-) (a).

0

_ % / BBl (1) dt+% / VBT g (1) — g (D)) dt
_ —%B_Qg_(—l)vLR(g—)(—l),

and the term R(g_) (—1) is regular since
B*[R(g-) (—1)] € Dp (: +00)

see Lemma 1.
Now from the study and the results on the behaviour of B*v (g_) (x) near —1, see (31),
one concludes that the behaviour of B?u_ (z) near —1 is the same as that of

1 1
c1+2)B |:§g (_1) + B2f, + §€(I+1)Bg, (_1) — o(l+2)B [gi (—1) + Bin} .

Due to Lemma 1, B?u_ (.) has the following maximal regularity properties near —1

{ B*u_(.) € C([-1,0; E) iff [g_ (—1) + B2f_] € D(B?) = D(B)
B2u_ () € C"([~1,0[ E) iff [g_ (—1)+ B2f_] € Dg (n, +00).

5.3. Analysis of w; Near 1
Let us assume the necessary condition f; € D (B). Recall that

wy () =ePay +e"Pg 4o (hy) (2),
then the behaviour of
Bwy (x) = B*[e "Pay + "5, 4o (hy) (2)],
near 1 is the same as that of

B2 B, Ly (hy) ().
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One has seen in (30), (34) that
B

e PAT [(<po (14 ) 4 qB (I - ) Bt (1 )G
+ B (hy) (1) - BT

with ]
() (1) = S (1) + . (1) (1).
Since the behaviour of B?v (hy) (z) near 1 is that of e('=%h, (1), as mentioned in (33),

it follows that the behaviour of B?w, (x) near 1 is that of

—T 1 1 —T —T
_(1-0)B (§h+(1)+Bf+> +§€(1 By (1) = —e1-9BRBF, .

Due to Lemma 1, B>w, (.) has the following maximal regularity near 1

Bw, () € C(|0,1]; E) it f. € D(B) et Bf, € D (B)
Bw, () € C7(10,1]; E) iff Bf, € Dy (1, +00).

5.4. Analysis of u_ at the Interface 0
The behaviour of

B%u_ (z) = B*e *Ba_ + B*W B354 B (g_) (z),
near 0 is the same as that of
Be"Pa_+ B (g) (),
and due to (32), it is the same as that

1
B "Ba_ + ie_ng_ (0).

Now, in virtue of (27), one has

a_ = [AB) " [ps (I -e*P)F — (I+*)G.]
= [AB) e B = G =P [AB)] 7 [ P+ Gl

Write

AB) = pe(I=&") 4 p (1 +67) —qB (1 - ) (1+67) (37)
= pil+p-I—qB + T,

where, clearly T, is a very regularizing operator. Then, it suffices to analyze
2 —aB -1 |-
B e P [A(B)] 7 |(p+ £ = Go) + 5B (p4l +p-L = qB) g- (0) ],
near 0. First, let us evaluate the term

I__
(p+Fe =G+ 5B (0l +p- 1 —qB)g-(0),
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by using the expressions in (24). One has
Fo = p—ef —e"B7 i +ePv(g-) (=1) —v(g-) (0) + "0 (hs) (1) + v (ht) (0)

= o= v(g) (O + 0 (h) O] + R =0+ 5B (0) = 3B h (0) + R,

G. = B —(p-+¢B)e’f-+ pre® B fi+ (p- +qB)ePv(g-) (1)
— py €"B7W (hy) (1) =p-B™' (9-) (0) + p4 B~ (hy) (0) — ¢Bu (g-) (0)
= B¢ - %p_B‘zg— (0) + %p+B‘2h+ (0) + %qB‘lg— (0) + S..

Then

1 1
(p+Fe =G+ 5B (pe I +p-1—qB)g-(0) = py (so +5B79-(0) = 5By (0))

P . 1 1
- (B W= op- BT (0)+ 5B hy (0)+ 54B g (0))

1
+5B7 (p+ +p-—aB)g-(0) + P
= =B (¥ +qg-(0)) + pry + B [(p+ +p-) g- (0) — p1/oy (0)] + P
Now, as ¢ € D (B?) and B2 [(py +p-) g (0) — p+hy (0)] € D (B?), the behaviour of

e S B) [(0F - G+ 157 s+ —aB)g 0)]

is that of
B " [A(B)] T B (¥ +qg-(0).

The determinant
A(B) = —¢B (I — ") (I +€e*P) A,

being invertible of inverse

[A(B)] " = —%A*‘l (I+e) " (1-e®)"' B, (38)

(where A7 (I + €2B)_1 (I- €2B)_1 is bounded and commutes with e=*?), one concludes
that the behaviour of B?u_ (z) near 0 is that of

e "PBB [ 4 qg- (0)] = e *P [ + qg- (0)].

Then, due to [7], the necessary and sufficient conditon to obtain the regularity of u_ near
0 depends of the regularity of the term

[¥ + q9- (0)].
One gets the following Theorem.

Theorem 2. Assume (16). Let f, € D (=AY, ¢ € D(A), ¥ € E and let g_ €
C"([-1,0]; E), hy € C"([0,1]; E) with 0 <n < 1. Then
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1. u_ € C([-1,0]; D(A)) N C?*([-1,0]; E) if and only if

l9- (=1) + B*f-] € D(A) and q9-(0) + € D(B) = D(A),

2. Au_(.), (u_)" € C"([~1,0]; E) if and only if

[9- (=1)+ B*f_] € Da(n/2,+00) and qg—(0) + v € D4 (n/2,+00).

We have used tha fact that

D(B)=D(A) and Dg(n,4+00) =Dy (n/2,+00).
5.5. Study of w, at the Interface 0
Recall that
B*wy (x) = B? [e “Pay + P08 40 (hy) ()],

where

ay = [A(B)]™ [—p- (I +€*”) +¢B (I — e*P)| F. — (I — €*") G,

(see (28)). Therefore, the behaviour of B*w, (x) near 0 is the same as that of
B%e “Ba, + B*v (hy) (7).
Now as (see (33)) the behaviour of B?v (hy) () near 0 is that of $e"Ph, (0) and
A(B)=pil+pI—qB +T.,

it suffices to analyze the behaviour of

. 1
B*e “P[A(B)] ™ [(—p_l +4B) F. = G — 5 (pI +p-1 = qB) B h. (0) .

where as we have seen

F. =@+ 1B 2% (0) = LB~%h, (0) + R..
G, =B — 3p_B72g_(0) + ip+ B?h, (0) + 3¢B~'g_ (0) + 5.

with regular terms R.. and S,. Then

1 .
(=p-+4B) Fe = Go = 5 (po ] +p- 1 —qB) Bh, (0)

— (—p_ +qB) (90 + 1B (0)- 1B, <o>)
- (B‘lw - %p-B‘Zg— (0) + %mB‘Qm (0) + %qB‘lg- (0))

by 0uT +pT—B) Bh, (0)+ Qo= ~B~ [ — 4B+ ghy (0)] + Q..
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where Q. € D (B?). Therefore, the behaviour of B?w, (x) near 0 is that of
B2 P [A(B)]7 BT [ — 4B + gy (0)]

as mentioned in the previous section, see (38). One then deduces that the behaviour of
B?w, (z) near 0 is that of

e [ — gB*p + ghy (0)] .

Then, using again [7], the necessary and sufficient conditon to obtain the regularity of w.
near 0 depends on the regularity of

b —qB%p + qhy (0).
We conclude by the following Theorem.

Theorem 3. Assume (16). Let f, € D((—=A)Y?), o € D(A) and ¢ € E and let g_ €
C"([-1,0]; E), hy € C"([0,1]; E) with 0 <n < 1. Then

1. wy € C([0,1]; D(A)) N C?([0,1]; E) if and only if

(—A)'2f, € D(A) and & — ¢B*p + qhy (0) € D(A

Y

~—

2. Aw,(.), (wy)” € C"[0,1]; E) if and only if (—A)Y2f, € Dy (n/2,+00) and ¢ —
¢B*¢ + qhy (0) € D4 (1/2,+00).

By observing that
1 1
. [ — qB*¢ + qhy (0)] — p [+ qg- (0)] = hy (0) — g— (0) + Ap,

one deduce the complete Theorem announced in the Introduction.

6. Going Back to the Concrete Example

Let us go back to our concrete limiting problem

Agypu—=g-in |=1,0[ x Q (39)
A(Ly)w_,_ - h+ ln ]0, 1[ X Q
with the boundary conditions

(u_=0on |-1,0[ x T
wy =0o0n 0,1 x T
u_ = f_on {—1} xQ A0
u=f_on {—=1} xQ (40)
p+%200n {1} x Q

\
and the transmission conditions

wy =u_ on {0} x

ou_ owy (41)
p_% _p+6_x = QAyU_ + dgo on {O} x €.
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Here Q is a bounded domain of R", n > 1, with a regular boundary T'.
In view to illustrate our abstract analysis, we are going, in this section, to explicit and
interpret our impedance compatibility conditions

{ q9-(0)+¢ e DA)
hy (0) —g- (0) + Ap € D(A),

q9-(0) + ¢ € D (n/2,+00)
B (0) = g- (0) + Ap € Daa (n/2,+0)
in the case of the following vector valued Banach spaces
C([=1,0); €5 (D)) and C([0,1]; € (D)),
provided that _ -
g- € C"([~1,01; G (%)) and hy € C([0, 1]; G5 ()
and all the compatibility boundary conditions are satisfied.
Consider the following operator defined in CJ () as
{ D(A) = {v € C2(Q) v, Ay € cg(ﬁ)}
[Av] (y) = Ayu(y).
Then A verifes (16) and D(A) coincides with the well known little Hélder continuous
functions space hj (), see [12, p. 497]. B
Let us point out that the boundary condition in space Coﬁ (€2) is essential. Otherwise

the estimate in (16) is not verified, see |10, p. 110, Example 3.1.33|.
One also has

D(A) = Da(1+ B/2,400) = {v € C*P(Q) : v = Ayv =0 on 90} ;

see [10, p. 110, Corollary 3.1.32 and Corollary 3.1.35]. The interpolation D4(1+ 3/2, +o0)
is intended in the Banach space Cy(Q). Therefore, in our subspace E = C5(Q) € Cy(Q),
one has

DA(n/27+OO) = (‘D( ) (§)>1 1/2,+00
crQ

_ ({UECQ+B U:Av:OonaQ},Cg(ﬁ)l_n/27+oo
(com

), {ve @) :v=~Av=0on aQ})
C(,)B+n/2_[2+ﬁ Bl (g)
= Cy(Q),

n/2,+00

see [10, p. 31, Corollary 1.2.18].
The conditions ¥ = qgo € E, f_- € D (A) become

q90 € Cg(ﬁ)
foe {v € Q) v, Ay e 05@)}

72 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 4, pp. 50-75



MATEMATNYECKOE MOJIEJINPOBAHUE

and Af_ —g_(—1), qg_(0) + 9, ¢h(0) + ¢ € D(A) signifies

y— Ay f(y) —g-(—1,y) € g (D)
y— 9-(0,9) + 9o(y) € hy(Q)
y— hi(0,9) + g0(y) € ho (),

similarly Af- — g (=1), qg-(0) + ¢, ¢h,(0) + 1 € D (n/2,+00) mean
y— Ay f(y) —9-(—1,y9) € C; (D)
y—9-(0,9) + 9(y) € C7 ()
y — hy(0,y) + go(y) € O§+n(9)~

Note that CZT(Q) c hJ(Q).
One can conclude by the following result

Theorem 4. Assume that g_ € C"([—1,0];C5(Q)), hy € C([0,1];CY(Q)) and
g0 € CE(Q), f_ € {v € CHQ) v, Ay e cg(ﬁ)} = CZ (@),

Then there exists a unique solution w of Problem (39) — (41) defined as

| —1,0[U]0,1] — ClQ)
_ Ju(z,) on ] —1,0]
x »—>u(a:,.)—{ (,)on] 1
such that
1Lou e C(-1,0C55" () n C¥([-1,01;C5(Q), wy € C([0,1;Cos" (@) N

c2([0,1];:C¢ @ )) if and only if

{ y— Af_(y) — g-(—1,y) € hy(Q),

P2u_ . 92
2 dyu, o € O ([FL0L @), Ay (), T € 07 (10,11 C5(@)) i and
only if
yr— Ay f-(y) —g-(—1,9) € C{ (@)
y— g-(0,9) + go(y) € C7 (D)
y— hi(0,y) + go(y) € Cy ().
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QPOEKT BOSMVYIIEHNA TOHKOI'O KJIEEBOI'O CJIOZ
B HEKOTOPBIX KPAEBBIX 3AJAYAX ITEPEHOCA

HA OCHOBE SJIJIUIITUYECKHUX
JANO®PEPEHIITNAJIBHBIX YPABHEHI

A. @asunu, P. Jlabbac, K. Jlempabe

B nannoil pabore paccMarpuBaeTcsd 3a/a4a O JIBYX TejlaX, CKPEIJIeHHbIX TOHKUM KJe-
eBbIM cJi0eM (Tpermii Marepuasn) Tommuabl d. [Ipu §, crpemsineMes K HyJIIO, HOTYYaeTCst
KpaeBas 3aJada nepenoca Ha dukcupopanuoil obsactu. [losydyeHbl HOBbIE PE3YJILTATDLI IO
HCCIeOBAHUIO TAHHOH 3a7add B IPOCTpaHCTBAX lenbaepa, a UMeHHO, gBHOe IpelCcTaBie-
uue perterus. C HOMOIIBIO TEOPUU OJIYIPYII U BEIECTBEHHBIX HHTEPIOJSIITHOHHBIX IIPO-
CTPAHCTB IIOJIyueHbl HEOOXOIUMBbIE U JIOCTATOUYHBIE YCJIOBUS HA TPAHUIE PA3Jiesa IPH KOTo-
PBIX CYIIECTBYeT eIMHCTBEHHOE pelleHre 3aJa4u.

Kaouesvte croea: srrunmuieckas kpaesas 3a0aywa; 3a0ana nepenoca; afderm 603my-
UeHUA; MORKUU CA0U.
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