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OBSERVABILITY OF SQUARE MEMBRANES
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Fourier series methods have been successfully applied in control theory for a long
time. Some theorems, however, resisted this approach. Some years ago, Mehrenberger
succeeded in establishing the boundary observability of vibrating rectangular membranes
(and of analogous higher dimensional problems) by developing an ingenious generalization
of Ingham’s classical theorem on nonharmonic Fourier series. His method turn out to be
useful for other applications as well. We improve Mehrenberger’s approach by a shorter
proof, and we improve and generalize some earlier applications.
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Introduction

Let us consider the wave equation in a bounded domain €2 C R™ with boundary I':

' —Au=0 in R xQ,

u=0 on R xT, (1)
u(0) = uyg in Q)
w'(0) = uy in Q.

We recall that if ug € H3(Q2) and u; € L?(Q2), then the problem has a unique "finite-
energy' solution satisfying

u € C(R; HA(Q)) N CY(R; LX(Q)),
and the "energy"

1

E(t) = 5

/]Vu(t,ac)\2 + [ (t,z)* dz, teR
0

of the solution is in fact independent of ¢.

It was discovered by Lasiecka and Triggiani [1] that the normal derivative of finite-
energy solutions is well defined as an element of L2 (R;L?*(T")), and for each bounded
interval I there exists a constant c such that all finite-energy solutions satisfy the estimate

ov
I T
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Lions |2] gave a simpler proof by using the multiplier method.
Subsequently Ho [3] discovered that the inverse inequality also holds if the interval [ is
long enough. This was improved and generalized by Lions [4,5], who established estimates

of the type
<]
N

where S is some part of the boundary I'.

Both Ho and Lions applied the multiplier method. By using deeper tools of microlocal
analysis, Bardos, Lebeau and Rauch [6] obtained rather precise necessary conditions and
sufficient conditions for the validity of such inverse inequalities involving the choice of S
and the length of I.

Considering the special case where Q C R? is a rectangle and S is the union of two
adjacent sides, the multiplier method yields the optimal condition: I has to be longer than
twice the diagonal D of the rectangle. (In the original proof the optimal condition on [
was achieved by a somewhat deeper compactness—uniqueness argument; this was replaced
by a short elementary proof in [7].)

Many attempts have been made to recover the last result by Fourier series techniques.
Eventually, Mehrenberger [8] succeeded in devising such a proof, although under a stronger
condition on I: he needed |I| > 4v/2|D| instead of |I| > 2|D|. His main tool was the
following clever generalization of a classical theorem of Ingham on nonharmonic Fourier
series:

oul?
ool ar 2)

Theorem 1. Let (wy)32 _ . be a sequence of real numbers, satisfying for some nonnegative
integer n and for some positive real number 7y the following partial gap condition:

lwpr — wi| > |k — K|y whenever max{|K'|,|k|} > n.

Then the following inequality holds for all square summable sequences (xy)5>_.. of
complex numbers:

Ry o 2

: 4R -
/ S wet| dt > el S el - i S gl
"R lk=—o0 |k|>n k=—o00

We remark that the estimate remains valid by translation invariance if we change the
integration interval (— R, R) to any other interval of length 2R.

This inequality is obvious if R < g because then the right side is nonpositive. For
R > §> however, the result is delicate: for n = 0 this reduces to the deeper part of
Ingham’s theorem [9].

Theorem 1 proved to be useful for many other control problems as well [10,11].

The plan of this paper is the following:

e For the reader’s convenience, in Section 1 we briefly reproduce Mehrenberger’s proof
of Theorem 1, based on Ingham’s first method.!

e Applying Ingham’s second method, in Section 2 we establish a variant of Theorem 1,
under a weaker condition on R.

!'We recall that Ingham proved his theorem in two different ways.
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e Using the result of Section 2, in Section 3 we weaken the assumption |I| > 4v/2|D|
for the boundary observability of square membranes to |I| > 4,0441|D|.

e The method of Section 3 may be applied to improve most results of [10] and [11].
We illustrate this in Section 4 by generalizing the last result of [11], by observing a
vibrating rectangular membrane on a finite number of horizontal and vertical lines.

1. Proof of Theorem 1

We may assume by scaling that v > 2 and R = 7/2.
Following Ingham, we introduce the function h : R — R and its Fourier transform
H : R — R by the formulas

ht) = cost %f It] < 7/2,
0 if [t| > /2

and
H(x) := /h(t)em dt, zeR
If  # +1, then we have
o0 7T/2 7T/2
H(z) = / h(t)e™ dt = / costcosat dt = /2costcosxt dt =
—00 —7/2 0

s i 1)t si 1™

= /cos(m+1)t+cos(x—1)t dt = sin(z + 1) + sin(z — 1) =
r+1 r—1 :

0
_sin(z +1)7 N sin(r —1)7  cos%f  cosfF  —2cos T
o+l r—1  z+1 x-1  22-1

Proof of Theorem 1. Since 0 < h <1, we have

/2 2 00 . 2
/ Z age“rt|  dt > / h(t) Z age“rt|  dt = Z H(wy — wy)ajan+
—mj2 Ik=—00 Zoo k=—00 max{|k|,|k[}>n
00 2
+ / h(t) | > ae™| dt> Y H(wy —wi)agar = H(0) Y |ax*+
o |k|<n max{|k’|,|k|}>n |k|>n
+ > H(ww —wiapar > HO0) Y al = Y ]H(w/—w)|M
k k)WL — k k k 9 .
max{|k'|,|k[}>n |k|>n max{|k'|,|k|}>n
k' #k k' #k

Since the function H is even, the last expression does not change if we change the last
fraction to |ax|?. Distinguishing in the last sum the cases |k| > n and |k| < n, it follows
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that

/2 2

/ Z age“rt|  dt >
nyp Ik==00

> il (H(O) — > |[H(ww —Wk:)\> -
|k|>n k'#k
=l ) I H (ww — wi)-

|k|<n |k'|>n

The proof will be completed if we show the following three relations:

H(0) =2
Z!H(u}k/—wk | < E it |k| > n;
k'K 7

8 .
Z ‘H(wk/ — Wk | < — if |l€’ <n.
k[ >n 7

The first equality follows at once from the explicit expression of H(z). The second and
third relations also follow from this expression and from the gap condition v > 2. Indeed,
we have

if |x| > 1. Since v > 2, in case |k| > n we have

2
Z|Hwk/_wk|<z|wk/—wk|2—1_Z|k/ k|2 <Z|k,_k|2’72_1_2

K £k k' £k k' #k K £k

o)

8 1 8 2 8 — 1 1 8
_y_éqk/ k|2—1_¥m2214m2—1_Emzzl(zm—l_m“) T2

The proof of the third relation is identical.

2. A Variant of Mehrenberger’s Ingham Type Theorem

Given two positive numbers v and R, we introduce four continuous even functions
H . G,h,g: R — R by the following formulas:

Hiz) cos’i/—x if @ < v/2;
T) =
0 if x > v/2;

G:=RHxH)+H H,
= / H(z)e™ du;

g(t) == 7G(m)em dz.

—00
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We are going to prove the following variant of Theorem 1:

Theorem 2. Let (wg)3> . be a sequence of real numbers, satisfying for some nonnegative
integer n and for some positive real number v the partial gap condition

lwir — wi| > |K — K|y whenever max{|k'|,|k|} > n. (3)

Then the following inequality holds for all square summable sequences (xx)72_ . of complex
numbers:

2
2m =
iwit 2 2
/ Z ek a > —_py G(0) > fanl = max|G] Y |al* | . (4)
k=—o00 k=—o00 |k|<n
We notice that
o = max |g| = [mgé]g<oo and [ :=max |G| = max |G| < c0.

) =Y

The first relation follows from the formula g(t) = (R? — t*)h(t)? implying that g > 0 in
[—R, R] and g < 0 outside [—R, R]. The second one holds because G vanishes outside
(=771

Since g and G do not vanish identically, we have also a, 5 > 0.

Proof. We write

x(t) = Z ape™rt
k=—00
for brevity.
Using the Fourier inversion formula
/ g(t)e ™ dt = 2nG(x)

we have
R 00 o
a/|x(t)|2 dt > /g(t)|x(t)|2 dt = 2m Z G(wp — W) TTh- (5)
"R . k,k'=—00

Since G = 0 outside [—7, 7], applying (3) the last sum is equal to

Z ’331@’2 + Z Wk — Wk ) TR Tk -

k=—o00 |k|<n
|k'|<n
k#K'

Remarking that

—+ /
Z G(wk —wk/)mk:ck/ > ﬁ Z M 5 Z |m ’2

|k|<n |k|<n |k|<n
|K'|<n k'|<n
k#K'
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we deduce from (5) the inequality

R

[latr @t =27 (60) 3 =5 3 Il |
“r k=—o00 |k|<n
ie., (4).

O

Remark 1. For the purposes of the next section we determine explicitly the function G.
For v = 7 an easy computation leads to the expressions?

N 4(R% — %) o Tt
t) =g(t) := -
9(t) = g(¢) 1021 —12" 2
and
26(x) = Gilz) = (R?*+1)sinz + (R* — 1)(7 — ) cos x, ?fx <m;
0, if x> .
The general case hence follows by a change of variable.? Setting ¢ := 7/y we have
H(z) = H(cx),
= /H(x)em dr = /]:.l(cx)ei(t/c)(cm) dx = c_lfﬁ(cx)ei(t/c)(“) d(cx) = ¢ h(t/c);
G(v) = R*(H + H)(x) + (H' * = R? / H(y y) dy+

+/H’(y)H’(az—y) dy:RQ/H(cy)ﬁ(cx—cy) dy + ¢ /H’(cy)f[’(cx—cy) dy =

_ R / AV (cx— 2) dz+ / ()T (e — =) d=
. (f_j(ﬁ « ) + (' + ﬁ')> (ca);

g(t) = /G(aj)em dr = c 'R? /(f[ « H)(cx)e™ da + c/(f[’ s« H')(cz)e™ dx =
= clRQ/(ﬁ s« H)(cx)e't) g 4 c/(ﬁ’ s« H')(cx)e't/(@) dy =
= C_QRQ/(I:I* f])(z)ei(t/c)z dz+/(]:1' * ]:I')( )e' QUL P

= ¢ ?R? /(H « H)(2)e'W9% dz — 22 /(f[ « H)(2)e'W9% dz = ¢ 2(R? — 2)h2(t/c).

2See [12, pp. 62 and 64.].
3All integrals will be taken over R.
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3. Boundary Observability of Square Membranes I

We investigate the validity of the inverse inequality (2) for the solutions of (1) when
2 is a square membrane with diagonal D. (The computations of this section may be easily
adapted to general rectangular domains but the results are less elegant.)

We are going to prove the following

Proposition 1. If |I| > 4,0441|D|, then the finite energy solutions of (1) satisfy the
estimate (2).

Since our assumption is between |I| > 41/2|D| and the optimal condition |I| > 2|D],
our result is weaker than the result obtained by the multiplier method, but stronger than
the first theorem found in [8] by Fourier series techniques.

Remark 2. As in [8], the proof of the proposition, given below, may be adapted to
higher dimensions when 2 is an N-dimensional interval, and S is the union of the sides of
(2 having a common vertex. Furthermore, we may consider various other (mixed) boundary
conditions such that the corresponding eigenfunctions are still products of sine and cosine
functions.

For the proof we assume by scaling that € = (0, 7) x (0,7) and

is the union of two adjacent sides.
We recall that the solutions of (1) are given by the series

u(t, xy,x0) = Z Z (are™" + bre™ 1) sin(ky 2y ) sin(koza), (6)
k1=1ka=1

with the usual notation |k| := \/k? + k2, and that the complex coefficients satisfy the
equality (see, e.g., [11, (3.7)])

SIS S (). (7

k1=1ko=1

Turning to the study of the boundary integral first we observe that

J e

-R 0

diL'l dt =

™

Z s

2

Z ko (akeilklt + bke_ilklt) sin(kyz1)

k1=1ko=1

dlL‘l dt =

- o B 2
5 E / E (k’g(lkellklt—i—k‘gbke_llklt) dt. (8)
ki=1"p lke=1
We need the following lemma:
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Lemma 1. Fiz an integer N > 2 and N — 1 integers ky, ..., kny_1 > 1. If kn, K}y are two
positive integers satisfying

max{ky, k} > max{ki,..., kn_1},

then

'\/k%+~-+k?v_1+k?v—\/k%+~~+k%v_1+<k§v)2 > (VN = VN = Dby — k.

This lemma improves a result in [8] by increasing the constant 1/2v/N to VN —
VN — 1. For example, we get v/2 — 1 ~ 0,41 instead of 1/2v/2 ~ 0,35 if N =Proof.

Assuming by symmetry that ky > k) and setting s := k% +- - -+ k3%,_, for brevity, we have
s < (N —1)k%, and

V5 + kX — /s + (ky)?| _ Vs + Ry — /s + (ky)?
lkn — kil ky — Ky
B kn + Ky N ky + kly
Vet ks + s+ (ky)? ~ V/NE + (N = 1Dk% + (Ky)?

Setting = := kly/kn € (0,1) for brevity, the last expression is equal to

1+ =z

VN++VN—-1+22

The lemma follows because f(z) > f(0) = VN — /N —1 for all z € (0,1).
Indeed, f is strictly increasing because

fx) =

N 1 N-1-z
F@ = iyt (””m) >0
for all z € (0,1).

O

Using the case N = 2 of this lemma we may estimate the last integrals in (8) by
applying Theorem 2 with n = k; and v = v/2 — 1 for each fixed k;. This yields the
following inequality:

o

0) Z Z k |ak\2 + ’bk 5 Z Z kz ak]2 + ‘bk‘ )

d[El dt Z

kl 1 kg 1 k1 1 k2<k1
2 2 2
E E k3 () + 1bx]?) E > IR (Jaxl* + [0x]) -
kl 1 kz 1 k:l 1 k‘2<k‘1
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By symmetry we also have

-

—-R 0

2
dLEQ dt Z

(t,
81‘1 O 132

0) > > K (lawl® + [bel?) Z > 1R (lawl® + 1bef?) -

k1=1 ko=1 k’Q 1 ki1<ko

Adding the two inequalities we conclude that

2 2 0
—| dU' dt > % (G(O) — g) Z Z k2 (Jag | + |0x]?) -

k1=1ko=1

Taking (7) into account we obtain our final estimate:

I

It remains to choose R > 0 so as to satisfy 4G(0) — 25 > 0, i.e.,

dth> ()_25

max G < 2G(0).
In view of the last remark of the preceding section this is equivalent to the inequality
(K+1)sine+ (K —1)(r—x)cosz <2(K—-1)nm
for all 0 < z < 7, where we write K := R?*y?/n? for brevity. This is equivalent to

K+1 - 27 + (x — ) cosx
K-1 sinx

for all 0 < x < 7, and this is satisfied by a simple computation if % < 5,97, which in
turn is satisfied if K > 1,403. This is equivalent to*

R > /1,403 /v ~ 1,184483017 /7.

Using the value v = v/2 — 1 we arrive finally to the sufficient condition R > 2, 8595949477
of the proposition.

4. Internal Observability of Square Membranes

We continue to consider sufficiently smooth solutions of (3). The following notion was
introduced in [13] and generalized in [11]:

4This is better than the condition R > +/27/v in [8].
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Definition 1. A function f € L'(0, ) is p-cyclic for some integer p > 2 if its 2m-periodic
odd extension satisfies the equality

for almost all t € R.

We fix two integers p, ¢ > 2 and we consider only smooth solutions of (3) whose initial
data are p-cyclic in the first variable x; and ¢-cyclic in the second variable x5. We observe
the solutions simultaneously on p — 1 vertical lines and ¢ — 1 horizontal lines, given by the
equations

xlzﬂ’ j=1,...,p—1 and 962:‘2, J=1...,¢-1
P q

We call these solutions (p, ¢)-cyclic; see the figure below.

™

T/q

0  a/p T

Our purpose is to prove the following theorem:

Theorem 3. If p=q and

%, ©)

then there exists a positive constant ¢ = c¢(R) such that all (p,q)-cyclic solutions of (1)

satisfy the inequality
- 2 2
U (t, ‘7—,z> ! (t,z, J—)‘ dz dt.
p p

We will carry out the proof without using the condition p = ¢, obtaining the estimate

p—1 q—1
Z//w (t, j7/p, z2)|? d!Eth"—Z//'U (t,x1,im/q)|* doy dt

="k 0 i=1"R 0

R >

-1 ™

R
cE < /
“R

7j=1

”d

+ |u
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if R is sufficiently large. However, for p # ¢ the condition (9) is replaced by a more
complicated expression, difficult to evaluate (see (10) below).
For the proof we start by deducing from (6) that

u'(t, w1, 10) = Z Z ilk| (ake“k‘t — bke_”k't) sin(kyz1) sin(kaxs).

k=1 ko=1
Hence for each 7 =1,...,p — 1 we have
u'(t, j7/p, ) = Z Z ilk| (akeilk“ - bke_“k't) sin(kyjm/p) sin(kaxs) =
ki1=1ko=1
2p e’}
= Z sin(£jm/p) Z Z ilk| (akeilklt — bre ™M) sin(kyy);
/=1 klzé k2:1

in the middle sum of the last line k; runs over the set of positive integers congruent to ¢
modulo 2p.
Since sin(¢(j + p)w/p) = (=1)!sin(ljm/p) for 5 = 1,...,p, we may rewrite the last

equality as
p

' (t, g /p, xo) = Zsin(fjﬂ/p)fg(t, o)

=1
with -
fo(t,xo) =i Z Z +|k| (akei‘k‘t — bke’”k't) sin(kozs);
k1§€ k2:1

here and in the following formulas k; runs over the set of positive integers congruent to ¢
modulo p (and not 2p).’

Since sin(¢jm/p) = 0 for j = p and since the matrix (sin(ﬁjﬂ/p))’g’;il is invertible®, it
follows that

p—1 p—1 p—1
€1 Z ’fg(f,l’2)|2 < Z ‘ul(ta fjﬂ'/p, $2)|2 < Z ‘fg(t,.%g)‘z
=1 j=1 =1

with two positive constants ¢; = ¢;(p), 1 =1, 2.
Integrating the left inequality and using the orthogonality of the functions sin(ksxs)
we get

p—1 7 p—1 7
Z/ |u'(t, Cjm[p, x2)|* day > ¢ Z/ | fe(t, x3)* day =
j=17 =17
o e & i
= GO0 D | Dl (o™ — e
=1 k2=1 klgf

5The signs & can be precised, but it is not necessary for the sequel: it is equal to 1 if k; = ¢ mod 2p,
and —1if &y =4+ p mod 2p.
6See [16, Problem 277].

Bectauk FOYpI'Y. Cepusa «MaTtemaTudecKoe MoJejinpoBaHUe 137
u nporpammupoBanues (Becruuk FHOYpI'Y MMII). 2015. T. 8, Ne 3. C. 127-140



V. Komornik, P. Loreti

Integrating in time the preceding inequality, using Lemma 1 and observing that now
we may apply Theorem 1 with 7, = (v/2 — 1)p (instead of 7, = (v/2 — 1)) for each fixed
ko because of the congruence condition k; = ¢ mod p, we obtain the following estimate:

p—1 R =«
//]u/(t,éjw/p, To)|?* dwy dt >
=1 0
LT Pl 4R 2 9 )
2520 | 2 WP (el + I0el?) — 7 QZW (lanf? + 10ef?) )
/=1 k2:1 kl l —é

k1>ko

Since for (p, q)-cyclic solutions we have ay = by, = 0 whenever k1 = 0 (see [11, Lemma
4.1]), we may change Y9~} artificially to >-%_,. Then the last expression becomes

™

R
//]u (t, j7)p, 22)|* dxo dt >
“R

—1

’U

1

j
> 203 (30 6 o ) = g 3 6 ) ).
ko=1 \ki1=ko kl 1
Exchanging the role of z; and x5 we have also the symmetric estimate

™

R
//]u (t, 21, b /q)|* dxy dt >
“R

-1

xQ

1

J

>20RY (Z I (Joxf? + I°) s S (anf? + o ))

k1=1 k: =1

with 75 = (v/2 — 1)q. Adding the two inequalities we conclude that

p—1 R =« g—1 R x
//|u (t, 057 /p, x2)|* dxy dt + //|u'(t,x1,€j7r/q)|2 dry di
=1"Rr 0 =1"Rr 0
> e > IR (laxl® + [bel?)
k1=1ko=1
with

c:=2R (min{cl(p) 1(q)} — T Cl(];) T cl(q)> : (10)

R?*y3
In view of (7) the theorem follows if ¢ > 0. For p = ¢ this is equivalent to (9).
Part of this work was done during the wvisit of the first author at the Dipartimento

di Scienze di Base e Applicate per U'Ingegneria of the Sapienza Universita di Roma in
May-July 2014. The author wishes to thank the department for its hospitality.
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HABJIIOJAEMOCTDb KBAJIPATHBIX MEMBPAH
METOJAMMUN PATOB ®YPBE

B. Komoprux, II. Jlopemu

Jlonroe BpeMsi B TEOPUM YIIPABJEHHUS YCIEIIHO NpUMeHsuch MeTonpl Pypre. Onna-
KO JIJis HEKOTOPBIX TeOpeM 3TOT moaxon He mpumenuM. Heckonmbko mer Hazam Merpen-
fepr yCTAHOBUI MPAHHYIHYIO HADIIOIAEMOCTD KOJTeOaHUH IPSIMOYTOJIbHONH MeMOpaHbL (1 J17Tst
AHAJIOTMYHBIX 331249 GOJIblIell pa3MepHOcTH), 0000IIUE KIACCHIeCKyI0 TeopeMy MHrama o
HerapMoHuUYecKuX psanax ypoe. [IpenmoskeHHBI KM METOT OKA3AJICS [TOTE3HBIM U IS APY-
rux Ipunoxkenuil. Mbl copeprmercTByeM noaxon MerpenGepra, COKpATHB J0KA3ATETbCTBO,
a TakxKe 06001aeM HEKOTODbIe paHee PAaCCMOTPEHHBIE MPUIOKEHHS.

Karouesvie caoea: nabarodaemocmn; nezapmonudeckuti pad QPypve; meopema Unzama;
B0AHOB0€E YPABHEHUE.
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