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At the application of bifurcation theory methods to nonlinear boundary value problems
for ordinary differential equations of the fourth and higher order there usually arise technical
difficulties, connected with determination of bifurcation manifolds, spectral investigation of
the direct and conjugate linearized problems and the proof of their Fredholm property. For
overcoming of this difficulty here the roots separation method is applied to the relevant
characteristic equations with subsequent presentation of critical manifolds, that allows to
investigate nonlinear problems in the precise statement. Such approach is applied here to
two-point boundary value problem for the nonlinear ODE of the fourth order describing
the buckling (divergence) of an elongated plate in a supersonic flow of gas, subjected to
compressed or extended boundary stresses at the various boundary fastenings.

Keywords: buckling of an elongated plate; bifurcation; Fredholm property.

1. Introduction. Statement of the Problem

Applied bifurcation problems described by ODE of the fourth order often contain
various physical parameters, including several bifurcational ones. Application of Lyapunov
— Schmidt method requires the precise knowledge of branching points, branching critical
manifolds and zero-subspaces of the relevant linearized operators and adjoint to them.
Such difficulties arise at the precise statement of problems [1, 2| on static stability loss
(divergence) of a thin flexible strip-plate in supersonic flow of gas, expressed or extended
by external boundary stresses and subjected by small normal load, described by boundary
value problems for nonlinear ODE of the fourth order dependent on two bifurcation
parameters (Mach number, compression/extension coefficient) and one small parameter.
The dependence of ODE on bifurcation parameters can be expressed via roots of the
relevant characteristic equation (ChEq) of the linearized problem, which can be assumed
as known precisely.

Such presentation allows to determine the critical bifurcation curves and surfaces, to
construct the asymptotics of bifurcating solutions in the form of the convergent series
by small deviations of bifurcation parameters on their critical values, to construct [3]
the Green functions for various boundary conditions [4], first in literature, since in the
well-known Melnikov’s handbook [5] there was marked the absence of Green functions for
aeroelasticity problems.
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In aeroelasticity problems, as a rule, the Galerkin method or grid methods are applied,
often the works have only qualitative character and take into account only one bifurcation
parameter — Mach number. Only in the last V.V. Bolotin works (1998 — 2005) they were
considered as bifurcational. Group transformations method of T.Y. Na [6], allowing to
reduce nonlinear one-parametric boundary value problem for ODE of the fourth order to
the Cauchy problem was applied to the problem of strip-plate divergence in S.V.Kireev’s
candidate thesis |7]. The review of basic results on the divergence and flutter of plates
and shells up to 1964 are given in A.S. Vol’'mir monograph [1]. Contemporary review of
aeroelasticity problems is contained in monograph [8].

In dimensionless variables the plate buckling is described by equation:

'LU” 2 1
X2 (—3> —Tw" + Bow + e3q(x) = kK (w', M, k) + Gw"/[(l +w?)z —1]dz. (1)
(14 w'?)?2 )
General approach to solving of such type problems is considered here on the examples of
boundary conditions:

(B) the left edge is free, the right one is rigidly fixed w”(0) = w"(0) = 0, w(l) =
w'(1) = 0;

(B') the left edge is rigidly fixed, the right one is free w(0) = w'(0) = 0, w”(1) =
w///<1) = 0;

(D) the left edge is fixed, the right one is rigidly fixed w'(0) = 0, w”(0) = 0, w(1) = 0,
w'(1) = 0.

Here w = w(x) is the plate deflection, 0 < x <1, —0o < y; < 00, T = %, 0<z; <d

are rectangular coordinates; K(w',M,r) = [1 — (1 + ”T’le’)%] for one-sided flow
around, K (w', M, ) = [(1 - “T’le’)% -1+ ”T’le’)%} for two-sided flow around,
N ﬁ, T ==L 9= ﬁ and k = 2¢ where d is the plate width, h is its

thickness, E is the Young module, p is the Poisson coefficient, ¢ < 0 (¢ > 0) is the
compressing (extending) boundary stress, M is the Mach number, py is the pressure and x
is the polytropic exponent, Jy is the elastic support rigidity coefficient, e3q(z) is the small
normal load.

For the computation of small buckled forms in neighborhoods of bifurcation parameter
critical values (Ty, My); T < 0 is the compressing, T' > 0 is the extending stress T' = Tp+e¢1,
M = My + 5, €3 = 0 methods of bifurcation and catastrophes theories [9] are applied.
The presence of the small normal load is not typical for aeroelasticity problems.

This work is fulfilled in the frames of the state task N 2014 / 232 of the Russian
Education and Sciences Ministry. The theme of scientific investigation work: Elaboration
of mathematical methods for the investigation of dynamics and stability of deformated
elements of constructions, installations, apparata and devices under aerohydrodynamical,
heat and shock effects.

2. General Model of Divergence of a Thin Elongated Elastically
Supported Plate in Supersonic Flow of Gas in the Local Form
Expansion of the nonlinearities of (1) in series on degrees of small by norm solution w

in a neighborhood of bifurcation parameters critical values gives it’s local presentation:

Bw = Y?uw® — Tow” + oou’ + fow =
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where the factor 1(2) in the parameter o, the upper (lower) line respond to one-sided
(two-sided) gas flow around the plate, and the left-hand-side of (2) together with one
of the boundary conditions defines the Fredholm operator B: C4t¢[0,1] — C¢[0,1]
with one-dimensional zero-subspace N(B) = span{p(z)} and deflect-subspace N*(B) =
span{¢(z)}.

The relevant conjugate operator B* is constructed by the integration by parts of the
square form £(w) -w along the segment [0, 1] taking into account the boundary conditions
for the direct problem:

L(w) = 2w — Tow" — 0w’ + Bow; (3)

(B*) x%w"(0) — Tw(0) = 0, x?w®(0) — Tw'(0) — ow(0) = 0, w(1) =0, w'(1) = 0;

(B™) w(0) =0, w'(0) = 0, x2w"(1) — Tw'(1) = 0, x*w® (1) — Tw'(1) — ow(1) = 0;

(D*) w'(0) = 0, x2w®(0) — Tw'(0) — ow(0) = 0, w(1) = 0, w'(1) = 0.

Application of the Schmidt regularizator B = B + (-,7)z, where v and z are the
biorthogonal elements to ¢ € N(B) and ¢ € N*(B) respectively, B! = T, with the

expansion w = wlOOOS -+ Wo100€1 + Wop10€2 + Woeoo1E3 + Z wkafkéa give the expansion
k+|a|>1
by £ and ¢ of the E. Schmidt branching equation (BEq) L(&,¢) =& — (w(,€),7) = 0.
For the one-sided and respectively for the two-sided flow around the plate the main
part of BEqs take the forms:

L, ¢e) = L000&? + Logo1€3 + Ligo1€es + Liigoler + Ligioea + ... =0 (4)
where Logog = —kn(zﬂ) Mg (oY), Loom = —(¢,¥), Lo = —(¢",¥),Lioio =
kr{@', ), Ligor = kH(ZH)Mg((p'(Fq)’, 1Y) and respectively

L(&,€) = Laooo€® + Looo1€s + Liiooéer + Liowoéea + Liomées + ... =0 (5)

1

where Lyooo = DB (03 4h) — x2(2020® + 30" + 9" 0" ) — 8(y" [ ¢%dz, ),
0

Loooo = 0, Looor = —(q,¥), Lioor =0, L1100 = — (", ¢), L1010 = oo(¢’, V).

3. Investigation of the Roots Distribution
of the ChEq for the Linearization

To the linearized operator B, defined by the differential equation

L(w) = *w® — Tyw"” + ogw’ + Bow =0, 0o = 1(2)krM,
with one of the boundary conditions responds the ChEq

To 00 Bo
M—aX+ b +c=0, (I:F,b:F,C:?. (6)
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At the investigation of ChEq the Sturm method [10]| for the roots separation is used,

according to which the number of the sign changes in the sequence of functions fy =
2

MoaX+bAtc, fi = fi = AN3=20\+b, fo = A=A —c, fy = 2=Bqettn )\ Miered) f,

{2} = s [4070 — 270" — 32401 e+ 1608+ 2560°¢° + 186 c— 1280’ — 1440%1Pc]
on the boundaries of some intervals says about the presence of real roots inside them. The
made analysis taking into account the coefficients b > 0, ¢ > 0 by physical meaning, shows

that the ChEq has the roots of the following forms:

1. Two negative and two positive roots \y = —ay, Ao = —, A3 = a3, \y = a4 a; >0
3 2
when T' > 0, fi = 2°=8¢e=9%% ~ £, > (;
2. Two negative and a pair of complex-conjugate roots \; = —aq, Ao = —an, N34 =

v+ 6i (aq, ag, 7,0 >0) when 2.1 T >0, f3 >0, f1 <0;22T >0, f3 <0, f4 <O0;
23T <0, fi <0, f1 <.

3. Two pairs of complex-conjugate roots A1 o = —y £ 014, Aga = 7y £ 02, 7, O > 0, if
31T >0, f]<0,f,>0,32T<0, f3>0,f,>0,33T<0, f3 <0, fy >0.

4. Two positive and a pair of complex-conjugate roots \; = a1, Ay = o, Ag4 = —y £ 10
(Oék, v, 0 > 0), it T'<0, f31 >0, f1 <O0.

Remark 1. The Sturm theorem determines the roots of the ChEq as independent
functions of the four variables. Application of the Vieta theorem A+ o+ A3+ A4 = 0 allows
to reduce their number up to three in non-degenerate cases (two variables in degenerate
cases).

Lemma 1. ChEq (6) hasn’t got the roots of the form 4°.

In fact, the Vieta theorem aq +ap — 2y = 0, —=2ya s + (a1 + o) (7% +0%) = b and the
change a; = 27 — as reduce the second equation to the quadratic equation with respect
to o af — 2vag + 72 + 6% + % having negative discriminant 4+% — 4 (7252 + %) <0.

In the set 1 the Vieta theorem allows to overdeterminate the roots in the following
form: A\ = —2a — 41, Aa = —2a + 61, A3 = 2a — 9y, Ay = 2a + d9. Corrected in such
way roots of the form 2 are the following: \; = =2y —a, Ay = =27+ a, \3 = v — 9,
Ay = v+ 6. The roots of the form 3 are dependent on three variables and does not required
improvement.

Thus at the combined application of the Sturm method and the Vieta theorem the
following statement can be proved.

Lemma 2. The considered ChFEq can have the roots of the three following nondegenerate
types: 1°. )\172 = =7 :I:iél, )\374 =7y + 7/52 (’7 > 0, 51 > 52 > 0), 2°. )\1 = —qq, )\2 = —Q9,
)\374 = ’}/Zl:lé (Oél > Qg > 0, ’}/,5 > 0), 3°. /\172 = —Oé:l:ﬁl,)\gA = aiﬂg (a,ﬁl,ﬁg >
0,052 < 1 < «) and three degenerate types, where there are two-multiple roots, obtained
by the passage to limit from nondegenerate cases: 1° — 2°. \ig = —a, X34 = 7 £
(’}/ > 0, o — 0) ; 1° — 3°. /\172 = —qQ, )\374 =« (Oé > 0), 51, 52 — O,’ 2° > 3° A\ = —«
A= =2y+a, Aga=7 (0, 7>0, vy <a<2y)

The statement of Lemma 2 can be presented on the following scheme on fig. 1.

Lemma 3. When o # 0 the characteristic equation (6) can’t have the roots 1° — 3°.
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Case 1°
, Vb yiié,

Case 1°-2°
-a, -0, atdi

—0
Case 2°
(v+a), -(v-a),ytis
5§—0

Fig. 1. Scheme of roots degeneration for the ChEq (6)

a,—a,
a,—a,

a

In fact, when A2 = —a and A34 = «, the Vieta theorem gives the following relations
between o and the ChEq coefficients a = 202, b = 0, ¢ = o* and consequently this
equation takes the form (A\* — a?)? = 0, that is possible only if ¢ = 0 = M = 0.
Remark 2. The presented scheme of roots degeneration allows to fulfill the checking
procedure for the Green functions construction and computation of bifurcating solutions
asymptotics by means of limit passage to multiple roots of ChEq.

Remark 3. The roots of ChEq for the conjugate problem (3) coincide by modulus with
the roots of ChEq for the direct problem and are opposite by sign.

4. Bifurcation Solutions Asymptotics at ¢35 # 0

Asymptotics of bifurcating solution on three small parameters €1, €5, €3 in a
bifurcation point (Ty, My, 0) is computed for the cases of the critical (bifurcation) manifolds
existence, which are determined by the equality to zero of the boundary conditions matrix
determinant(BCMD). For €3 # 0 the main parts of BEgs (4) and (5) must be investigated.

When Loy # 0 the change n = & + L“O(’“J“Ligggzﬁhoma?’ reduces BEq (4) to the
form 1> +a = 0. where o = L0001+L010161+L001152+L0002535 _ (L1100g1+L1o10e2+Lioo1€3)> In the

77 ? L2000 3 4L2000 ’
neighborhood of the branching point ¢ =0, e =0, e¢2 = 0, €3 = 0 one has n = £y/—«

and after the return to variables £, € the following result follows.

Theorem 1. For one-sided flow around the strip-plate when €3 # 0 and Logg # 0 the
solution of problem (2) has the form

_L1100€1 + Lioiog2 + Liooi€s i ((L11oo€1 + Lio1oe2 + 1—1100153)2

w(aj) B [ 4LZOOO

Laooo
2
Looo1€s + (Loro1€1 + Loo11€2)e3 + Looo2es

: ) eta) + offel el sl

LQOUO

When €3 = 0 and Loy # 0 the solution of problem (2) is presented by the series,
convergent in a small neighbourhood of ¢ =0, e, =0

Li100e1 + Lig10€
) = 0 L00) oy e,
2000

i.e. the transcritical bifurcation takes place.
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Consider now the case of two-sided flow around of plate. Here the main part of the
BEq has form (5).

By changing o = W and § = L°1°151+L°°1352+L0001€3 when L3gg0 # 0 the

equation (5) is rewritten in the form L(§) = & + foz + Wthh hasn’t got degeneration,
since L'(§) = 36? + a > 0. Therefore setting a = —p?, 8 = v®, reduce equation (7) to the
form

& — €+ 03 =0, (7)

the discriminant curve for which is determinated by the solution to the system

- +0° =0, 3¢ —p*=0,
having the form p = +v/3¢, v = 23¢, i.e. v=+Bu, B = glg < 1.

The plane of parameters (p,v) is splitted on two domains D;, where ‘%‘ < 1 and
equation (7) has three solutions, and D, where (7) has only one solution. In the domain
Dy, supposing v # 0, divide (7) on p* and introduce new variables 7 = % and A = ﬁ Then
equation (7) takes the form n* —n+ A\* = 0. According to theorem on inverse function, 7
is an analytic function of A3. Since for A = 0 it has the solutions n = 0, n = 1, n = —1,
the last equation by the Newton diagram method determines the asymptotics of these
three solutions: 17 = A + A7 4+ 3\ + 12X + o(|\?Y]), n = 1 — A% — 20 + o(|A°]),
n=—1+ X = 3)0 4 o(|A%]).

The returning to the variables &, p and v implies the expansion of the function £ = £(u)
in Taylor — Laurent — Puiseux series inside of some angular sector deleted in its top

3 9 15 21
=<9) +(3) +3(3) +12(3) ... or g_ﬁ 53+3ﬂ +1257+...
" j u m pl0

vd 30 B 332

2 =(—a)\? 4 - T4
3 2E 8 +... or £=(—a)"+ 20 3(—a)i? +
v: 3° 1 15} 332
- - — 4+ 4. or f=—(—a)VPy 7
3 22 + S5 + or ¢ (—a)= + ot S—a)i 2 +
Analogously for the determination of solutions asymptotics in the domain D,, where
|£| < 1, divide the equation (7) on v® and introduce the changes 7 = Sand A = £ The
equation arises ®> — A + 1 = 0, having only one solution n = —1 corresponding to A = 0.
For sufficiently small A this solution has the asymptotics
1 1 3 6 3/2 3
n=—1—-XN4+N0p. orfz—v—ku—— a oré=—pY34 (=) a +...

3 81 3v?  8lv it 3623 81p35/3

On the straight lines v = +Bpu, demarcating the domains D; and D, equation (7)
has the form & — £u? & B3u® = 0. The usage of the change n = % gives two equations

n3 —n =4 B% = 0, every of which has two solutions (\ég, 2‘/) and (— \/Tg, %g)

5:ifuand§ 243, of the type & ~ K(—a)'/2,

, respectively

Remark 4. At the presence of small normal load €3 # 0 the functions L(&, ) in the
BEqs both for one-sided and two-sided flow around the plate the point £ = 0, ¢ = 0 is
nonsingular, since L(0,0,0,0) = 0 but 8L 56 # 0 implies dL(0,0,0,0) # 0, therefore a
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catastrophe is absent. In every separate case of the presented investigation of the BEqs it is
not difficult to write out the solution of the nonlinear bifurcation problem. However at the
absence of compression/extension load (T" = 0) and two-sided flow around the plate the
Lypounov — Shmidt BEq has the form L(, &2, €3) = L3> + Lig1€e3+ Lowogz +. .. = 0. Its
investigation is made in [13], where it is shown that in a neighbourhood of the bifurcation
point the catastrophe of the fold-type take place. At the absence of small normal load
theorems 1 and 2 types are true.

The values of BEqs coefficients and respectively the asymptotics of bifurcating
solutions are inconvenient and therefore are omitted here.

5. Boundary Conditions D (g3 = 0)

Remark 5. The divergence of the plate takes place in the cases of bifurcation (critical)
manifold existence, for every case of the ChEq distribution we prove their absence or
existence and at there existence the basic elements ¢ € N(B), ¢» € N*(B) are computed.
However the computation asymptotics is omitted due to it’s inconvenience.

The case 1°. ChEq (6) has two pairs of complex conjugate roots: —y &£ 017, v %+ ai.
According to Vieta theorem 02 + 032 — 2% = —a, 27(67 — 05) = —b, v  +~72(62 +03) + 6305 =
c= 0 =7(1-% — )" 0 =71+ 22 + %)%

To the solution of the linearized problem w(z) = e 7*(cy cos(01z) + cosin(d1z)) +
e (c3 cos(dax) + ¢4 sin(dyz)) the BCMD has the form

Ap = 27010 ((v* + 03)e™ — (V2 + 61)e?) — (402 + 47705 — 4617° — &1y) sin b+
+05 cos 82(87 + (37> — 63)87 + 47" +7263)) sin by + 6, ((7* — 63)07 + '+
+37265 + 03) sin 6y — 2785 cos (07 — 65)) cos by = 0

At the fixed values of support rigidity coefficient there exist such values of v, 1, ds, for
which A(yY,01,03) - A(7?%,62,02) < 0. For example, at ¢ = 32,237, ! =1, §{ = 1,1971,
6y = 3,5,y =1, 62 =1,1972, 62 = 3,5.

Basic elements of the subspaces N(B) and N*(B) are:

o(x) = Aio [52(51 cos(6,x) + ysin(6,x))e? 3 4 6, (5, cos(Faz) — 7 sin(doz) )e V) —

—e 7 (((29* + 63) sin 8y — 0 cos 8) sin(d1 (1 — z)) — &1 (7ysin 2 — b cos d2) cos(d1 (1 — z))—

—e7" (8 (7ysin &y + &1 cos 8y) cos(02(1 — x)) + ((29° + 67) sin d; + 761 cos &y ) sin(da(1 — m)))}

Y(x) = Al* [61 (ysin(da) 4 02 cos () )7+ — 5y (v sin(012) — 6y cos(dyx))e 2+ —
0

—e 7 (((29* + 63) sin 63 + 765 cos 62 ) sin (&1 (1 — ) + &1 (7 sin 6 + 03 cos §) cos (61 (1 — x))) —
—e"(((29* 4 67) sin 61 — 761 cos 61) sin(82(1 — x)) — d2(7 sin 61 — da cos &1 ) cos(dz(1 — x)))] :

where Ag = ((272 + 02) cos dy — yd2 8indy) sin ; + 1 (7 cos dy — dp sindy) cos §; — yde 27,
Ay = ((292 4 %) cos b9 + Y2 8in dy) sin §; — 01 (7 cos dg + d9 8in dy) cos 8y + o>, Aj(y) =
Ao(—7)-
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Remark 6. Here and further Ay and Ay are different from zero minors of the third order
in the points of critical manifold Ap = 0 of BCMD for direct and conjugate problems.

The case 2°. Characteristic equation has two negative and a pair of complex-conjugate
numbers: —(a+7), —(v — «), v % di. Here according to the Vieta theorem oy + ag = 27,
arag —2y(ar+ag) +72 — 0% = —a, 2yaras — ( + ) (V2 +6%) = =b, apan(y?+62) = c =
Qo = 7<1j:\/—1 + 3zt #) Thus oy = y(14+u), ag = y(1—u),if 0 < —1+#+# < 1.
From the condition that the sum of the roots is equal to zero the logical substitutions a; =
Y+a, ay = y—a follow. Then a = 2y +a? -2, b = 2y(a?+4?) and ¢ = (v2 —a?) (2 +462).

For the deflections functions w(x) = c1e™ % + coe™*** 4 €7 (c3 cos(0x) + ¢y sin(dx)) =
cre” (T ey e= (70T L 3% (4 cos(6) +cy sin(dx)) the BCMD in variables o, v, d is equal to

Ap =4yad((? 4 6%)e ™™ — (7P — a®)e”) — (v — a) <(47304 — 426 — ya(a? + 6%)—

—6%(a® + 6%))sin§ — §(47° + 4y + (0% + o) — a(a® + 6%)) cos 6) e —
—(v+ ) ((473(1 + 47207 — ya(a® + 6%) + 6% (a® + 6%)) sin 0+

+6(49% — 4v%a + (6% + o®) + a(a? + %)) cos 5) e =0

and determines the critical bifurcation curves. Numerical experiment shows the bifurcation
points existence, where Ap = 0. At the fixed values of support rigidity coefficient there
exist such values (v, @, d), for which A(a!, v, 6%) - A(a?,~42,6%) < 0. For example at ¢y =
26,502, o' = 2,01 = 1,5, 63 = 3,33827; o> = 2, 67 = 1,51, 65 = 3,37773.

AT
ons gy g
I

/)

)

T T T T T 1
0,5 1 L5 2 25 3

‘_ By=5-==-By=10=emse B =15 —— [50:20‘

a)
Fig. 2. a) Visualisation Ap in case 1°; b) Relief Ap in case 2° for ¢ = 20

Indicate here the basic elements ¢ and 1 of the subspaces N(B) and N*(B)

1
o(x) = X [(((272 +ya 4 0%)sind — (v + @) cos§) e + §(y + 04)627) ez

(((272 — o+ 6%)sind — 6(y — ) cos §)e® + §(y — a)e?y) p—(r-a)
(v = )((2y + @) sin(3(1 = )) + dcos(3(1 = 2)))e™ + 2a(y sin(6z) — b cos(6z))e '~

—(v+a)((2y — a)sin(6(1 — z)) + d cos(d(1 — x)))e’J‘)eW] )
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-1

() [(7 —a) <(7(0z2 + 2ya — 6 sin(d) — §(2va + a? + 6% + 27%) cos(é))efu—

+290(y + a)e”“‘) e~ OmIT L (y 4 @) (257(7 — )"+ ((&® — 2ya + 6% + 29*)d cos(8) —
—(a? = 2ya — 6%)y Sin(d))e_“*) e~ (rta)z _ ((’y —a)(v(a® + 2ya — %) sin(dz) — §(2v°+
+2va + o 4 6%) cos(6z)) e’ — dya(y® + %) sin(6(1 — z))e” + (6(27* — 2y + 67+

+a?) cos(6x) — y(a® — 2ya — %) sin(dz)) e (v + a))ew] ,

where Ag = (v — «)(dsind — (27 + a) cosd)e™® — 2va(y + a)((2y — o) cos § — dsind)e?,
Af = 7((7 +a)(a? —2ya — 62’ — (v — a)(a? + 2ya — 6%)e? ™ — da(y? + §%)e 7 cos 5).

The case 3° of two negative and two positive roots of ChEq (6). From the Vieta
theorem it follows that 81 > B3, 31 < a. Consequently a = 37 + 32 + 2a?, b = 2a(B37 — 33)
and ¢ = (a? — 2)(a® — B2). Tt means, that the indicated case is possible only at the
presence of compressing boundary stress. At the fixed value ¢ = ¢y one has the relation

_ \/ B3+83++/(B2—53)+4co
a= 2

. To the solution w(x) = cye~(@+F7 4 cye=(a=Bz | popla—f)e 4
cqel@tP2)T there responds a determinant Ag of the boundary condition matrix

Ap =8apBa((0® — B3)e* — (o — 57)e*) + (= Br)e ™ ((a + B2) (Br + B2) (4o~

—(B1 = B2)*)e ™ — (a = B2) (b1 — B — 2)(4a” — (B1 + B2)*)e™) + (o + fr)e” ((a+
+62)(B1 — B = 2)(4a® — (B + B2)})e ™ — (a = Bo) (b1 + B — 2)(40® — (B1 — Ba)*)e™) = 0.
Lemma 4. On the considered set Q@ = {(«, 51, 02)|51 € (0,a), B2 € (0,c), 51 > [a} the

divergence s absent.

Proof. Introduce Ay = 8af1 B2(a® — 53)e ™2, Ay = (a— B1)e P ((a+ f2) (61 + B —2) (40 —

(81— B2)?)e 2, Ay = —(av — Br) (o — Bo)(B1 — B — 2)(4a® — (By + [2)?)e P1H2), Ay =

(a+Br)e (a+B2)(B1 — B—2)(4a” — (b1 + B2)?)e ™, As = —(a+ Br)e” (a— B2) (b1 + 8 —

2)(402 — (B — B2)?)e® and Ag = —8a B B2(a? — 2)e® for the parts of determinant Ap,
6

containing as cofactor exponents in various degrees. Then A = > A;. The restrictions
=1

implying from the Vieta theorem e/1=% < bt —e=Aitb « _o=F1 =h=B2 « =h1 gpq
—eP1th2 < 6P give the inequality Ay + Az +Ay+As < 2(a+ B1)elt (—4a By +4a2 B, By —
BBy — BBa+ BuB+aB}) +2(a— By e (40° By + 4028 By + a2 By — B3 Bo+ Br B — aB3).
The inequalities —e®* < —1, e < 1 and €' together with negativity of coefficient before
e imply A+ Az + A+ Ay < SOCﬁlﬁg(ﬂg — 6%) < 0.

For the remaining part of Ap from the inequalities A+ Ag < 831 Bo((a? — 53)e ™2 —
(a? — 32)e?®) by virtue of the inequalities e™2* < 1 and —e?* < —1 it follows A; + Ag <
831 B2(BE—35) < 0. The summing gives finally A < 8af; Bo(82—3)+8aS1 B2(B2—F2) = 0,
i.e. A <0 and the divergence is absent.

(I

Further the degenerate cases are considered.

The relevant degenerate case 1° — 2°, when ChEq (6) has a two-multiple negative root
and a pair of complex-conjugate roots: —a, —a, « & di. According to the Vieta theorem
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the coefficients of the ChEq are the following a = 2a? — 62, b = 2ad?, ¢ = a?(a? + §?)
and the relation o > \% is true. For the deflections function w(x) = c1e™* + cowe™** +
e*(c3 cos(0x) + ¢4 sin(dz)) the boundary conditions matrix determinant has the form

Ap = 2a8((a® + 6%)e ™ — a?e®) — (4a* + 4a*6% + 3020% + ad* 4 §*) sin 6—
—ad(4a® + ad® + 26%) cos 6.

The critical bifurcation curve consists of the points («, d), where A = 0. At the fixed values
of support rigidity coefficient ¢ there exist such values «, d, on which A(at, 6)-A(a?,?) <
0; for example when ¢ = 17,554, o' = 1,25, 6! = 3,11, o = 1,253, §> = 3,1 and the
divergence takes place.

Basic elements of N(B) and N*(B) are the following

o(z) = Alo [(6(1+ az)e®™ — (20°(1 —2) + 6(1 — ) — @) sind + d(c(1 — ) — 1) cos §) e **+

+(e7?*(8 cos(0x) — asin(dx)) — a(1 + 2a) sin(6(1 — 2)) — 6(1 + @) cos(6(1 — x))) €]

1
P(z) = Ar [(2(042 4+ 6%)(—asin(6(1 — z)) + 6 cos(6(1 — x)))e ™ + e*(6(20% + ad® + 2a°+
0
+20?%) cos(0z)) + a(20” + 6° + ad?) sin(dz) ) e ™" — ([(3a°8%x + 6 + 20+
+a?6% 4+ ad*z) sin § + a’*d(ax — 1) cos dle™® + 226 (1 + a(1 — x))eo‘)ew} :

where Ay = —ae™* + a(2a + 1) cosd — d(a + 1)sind and A} = 2a(a? + §?)(cosd +
dsind)e™® — a?e”(2a? + 26% + ad?).

The case 2° —3°, when ChEq (6) has the roots: —a, —(27 — «) and v of the
multiplicity 2. The Vieta theorem shows, that here a = o — 2va + 372, b = 2y(y — a)?,

¢ = ay*(2y — «). This is possible only for the extension boundary stresses a > 0.
To the solution w(x) = c;e™® + cye™ =M% L 37" + cywe?® the BCMD responds

Ap =4y(a—7)(Y’e™? — a2y — a)e”) + a7 (37" — (a + 8)7° + 3a(1 — a)y*+
+a’(a+2)y—a®) = (27— a)e T (37* + (2 — )y’ —aBa+ 1)V’ + o’ (a+4)y —a®) = 0.
Lemma 5. On the considered set Q = {(c, )| € (7,27)} the divergence is absent.
Proof. In fact, according to the Vieta theorem o = v + \/’m, v* > c. The usage of
the change « = v + 7, where 7 = , /7% — 7% <« reduces the BCMD Ap to the form

Ap=dy7(v?e™ = (v + 1)y =1)e?) + (Y +7)e" (37" = (v + 7+ 87 +3(y + 7)(1—
=TV (T T2y = (v 7)) = (= T)e T (3 (2 -y = 7)1 -
~(Y+ By 3T+ (v F 1) (v T Ay = (v 7)) =
=413 — dyr(yE — 12)e® — (v 4+ 7) (473 e e Ly oy ’}/7'3>6T+
+(y—=1) (473 — 43T T — AT+ 77'3)677

The simple inequalities 47y3e™27 < 4773, —4y7(y? — 73)e? < —4y7(7% — 72), €7 > 1
and e”7 < 1 imply the estimate Ap: Ap < 4773 —4y7(72 = 7%) — (v + 7) (49% — 4937 +
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O N L e 77’3) +(y—71) (473 T R R 77’3) = 273 (4v*—712) < 0.
Hence Ap < 0 everywhere on €2 and the divergence is absent.
(I

Remark 7. For all degenerate cases the verification of all results concerning the Green
functions and asymptotics of bifurcating solutions their verification is made with the aid
of limit passages from non-degenerate cases.
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MOJIEJTT MHOTOITAPAMETPUYECKNX BU®YPKAITUN
B KPAEBBIX 3ATAYAX JIJIS OZTY YETBEPTOTO
IOPSIIKA O MUBEPTEHIIUN YIJUHEHHO
IIJIACTUHBI B CBEPX3BYKOBOM ITOTOKE TA3A

T.E. Badoxkuna, B.B. Jloeunos

[Ipu mpumeHeHHEM METOMOB TeopuH OHMGMYPKAIUN B HETHHEAHBIX KPAEBBIX 33/1ad s
OOBIKHOBEHHBIX Mu((hepeHITHaIbHBIX YPABHEHHI 1eTBEePTOro U 060Jee BLICOKUX IIOPSIKOB,
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KaK IPABUJIO, BOBHUKAIOT TEXHUYECKUEe TPYIHOCTH, CBSI3AHHBIE ¢ OolpeneieHueM dudypkra-
LIHUOHHBIX MHOI'000pa3uil, CIEKTPATbHBIM UCCIEI0OBAHUEM HPSIMbIX U CONPSIYKEHHBIX JIMHEA-
PU30BAHHBIX 33/1a4 U JOKA3aTeJIbCTBOM HX PpeiroibMoBocTH. [y ux npeojoyeHus mpH-
MeHAeTCAd MEeTOJ, pa3fieJeHNd KOPHEeH COOTBETCTBYIONINX XaPAKTEPUCTHUIECKHX YpaBHEHMUE
C TIOCJIE/IYIONTUM IIPEJICTABJIEHIEM Yepe3 HUX KPUTHUYECKUX MHOT00Opa3uii, 4To IO3BOJIIET
WCCJIE/IOBATD HeMHHEHHbIe TpobeMbl B TOYHOM MOCTaHOBKe. Takoil MOixo HpHMeHseTcd
3/1eCh K JABYXTOUEeYHOU Kpaepoil 3amaqe s HesuHednoix O/1Y yeTBepTOro mopsdjika, OIm-
CHIBAOIIUX BBIIYYNBAHUE (THBEPreHIHIO) VIMHEHHOH [IACTHHBI B CBEPX3BYKOBOM IIOTOKE
raza IpH IMOMPAHHYTHOM CZKATHN/ DACTSIKEHHN [IPY DA3IMIHBIX IPAHUYHBIX 3AKPEILTeHUsX.

Kawuesne caosa: sunyvusanue Yyoiunennot naacmunss; dugyprayus; @pedzosvio-
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