УДК 621.922 + 621.923

ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА ОБРАБАТЫВАЕМОГО МАТЕРИАЛА НА ИНТЕНСИВНОСТЬ ЕГО ФИЗИКО-ХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ С АБРАЗИВНЫМ МАТЕРИАЛОМ ПРИ ШЛИФОВАНИИ

Д.В. Ардашев

Статья содержит результаты эмпирических исследований взаимодействия абразивного зерна с обрабатываемым материалом при шлифовании. Выполненные экспериментальные исследования позволили установить количественные характеристики физико-химических процессов, протекающих при шлифовании. Созданные эмпирические модели позволяют прогнозировать коэффициент химического сродства для обрабатываемых материалов различного химического состава.

Ключевые слова: абразивное зерно, шлифование, физико-химическое взаимодействие.

В научно-технической литературе достаточно широко и полно описаны различные виды износа абразивных зерен при шлифовании. Это работы Т.Н. Лоладзе и Г.В. Бокучавы [1], Е.Н. Маслова [2], Л.Н. Филимонова [3], Л.Л. Мишнаевского [4], В.А. Носенко [5], S. Yossifon [6], S.J. Deutsch [7] и др. Одним из основных видов износа абразивных зерен при шлифовании является физико-химический.

Задача определения количественного параметра — коэффициента химического сродства абразивного и обрабатываемого материалов решалась на основе экспериментальных исследований, с применением электронного сканирующего микроскопа JSM 6460LV (JEOL, США) [8, 9]. В результате был получен достаточный объем экспериментальных данных, позволяющих оценить качественное и количественное влияние химического состава шлифуемого материала на интенсивность его физико-химического взаимодействия с абразивным материалом.

Анализируя влияние температуры в зоне контакта абразивного зерна и обрабатываемого материала можно заключить, что повышение температуры в зоне контакта абразивного зерна с обрабатываемой заготовкой приводит к повышению интенсивности физико-химического взаимодействия между материалами. Следовательно, в суммарном объеме изношенной части абразива увеличивается доля износа в результате данного механизма износа.

Полученные экспериментальные данные позволяют также оценить влияние конкретных химических элементов на интенсивность протекания физико-химического взаимодействия в зоне обработки (рис. 2) при средней температуре шлифования 600 °C.

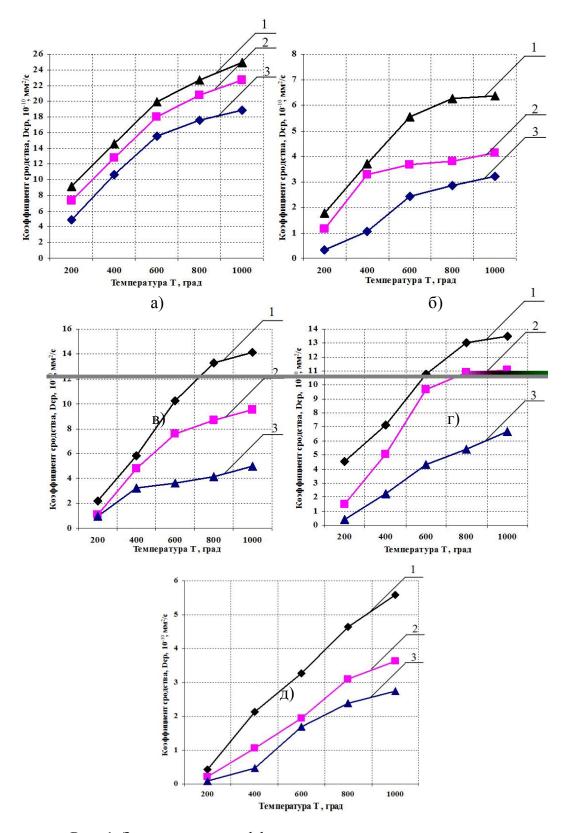


Рис. 1. Зависимость коэффициента химического сродства различных сталей от температуры: а) 1- сталь 20, 2-30, 3-40; б) 1-20X, 2-30X, 3-40X; в) 1-20X13, 2-30X13, 3-40X13; г) 1-20XH, 2-30XH, 3-40XH; д) 1-20XH3A, 2-30XH3A, 3-40XH3A

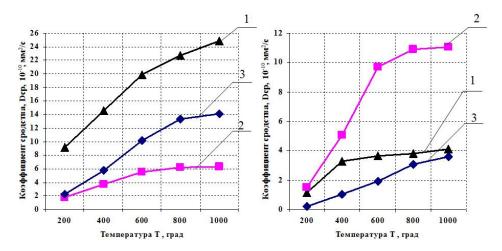


Рис. 2. Зависимость коэффициента химического сродства различных сталей от температуры: а) 1- сталь 20, 2-20X, 3-20X13; б) 1-30X, 2-30XH, 3-30XH3A

В таблице приведены данные для температуры 600 °С. На рис. 3 приведены зависимости влияния углерода (а), хрома (б) и никеля (в) на величину коэффициента химического сродства.

Полученные данные позволяют оценить влияние основных химических элементов на интенсивность протекания физико-химического взаимодействия обрабатываемого материала с абразивным. Так, увеличение концентрации углерода в обрабатываемом материале приводит к снижению интенсивности физико-химических процессов при шлифовании: при увеличении в обрабатываемом материале концентрации углерода на 0,1 % коэффициент химического сродства снижается примерно на 10 %. При обработке материалов, содержащих в своем составе менее 1 % хрома, при увеличении концентрации хрома в составе обрабатываемого материала интенсивность взаимодействия с абразивным материалом резко снижается (более чем в 3 раза), в дальнейшем, увеличение концентрации хрома (более 1 %) повышает коэффициент химического сродства: при десятикратном увеличении концентрации хрома, коэффициент увеличивается примерно в 2...2,5 раза.

Обратное влияние оказывает концентрация в шлифуемом материале никеля. При его концентрации менее 1 % происходит увеличение коэффициента химического сродства примерно в 2 раза. Дальнейшее увеличение концентрации никеля приводит к снижению коэффициента: каждый дополнительный процент никеля уменьшает коэффициент примерно в 2 раза. Рассмотренное влияние в шлифуемой стали углерода на коэффициент химического сродства сохраняется при обработке хромоникелевых сталей: повышение концентрации углерода снижает интенсивность химического взаимодействия между обрабатываемым и абразивным материалом.

Таблица Коэффициент химического сродства для материалов, отличающихся концентрацией различных химических элементов (для температуры 600 °C)

Марка стали	Химический элемент	Содержание элемента, %, до	Коэффициент химического сродства $D_{cp} \cdot 10^{-10}$, мм 2 /с
20		0,2	19,88
30	Углерод	0,3	18,02
40		0,4	15,58
20		0,25	19,88
20X	Хром	1,00	5,54
20X13		13,00	10,22
20X		0,30	5,54
20XH	Никель	1,00	10,75
20XH3A		3,00	3,26
30		0,25	18,02
30X	Хром	1,00	3,67
30X13		13,00	7,57
30X		0,30	3,67
30XH	Никель	1,00	9,68
30XH3A		3,00	1,93
40		0,25	15,58
40X	Хром	1,00	2,43
40X13		13,00	3,65
40X		0,30	2,43
40XH	Никель	1,00	4,29
40XH3A		3,00	1,69

Дальнейшее исследование влияния концентрации химических элементов на интенсивность физико-химического взаимодействия с абразивным материалом при шлифовании позволит создать комплекс математических моделей для прогнозирования коэффициента химического сродства при абразивной обработке материалов различного химического состава. Это позволит вскрыть особенности физико-химического износа абразивного инструмента в различных технологических условиях.

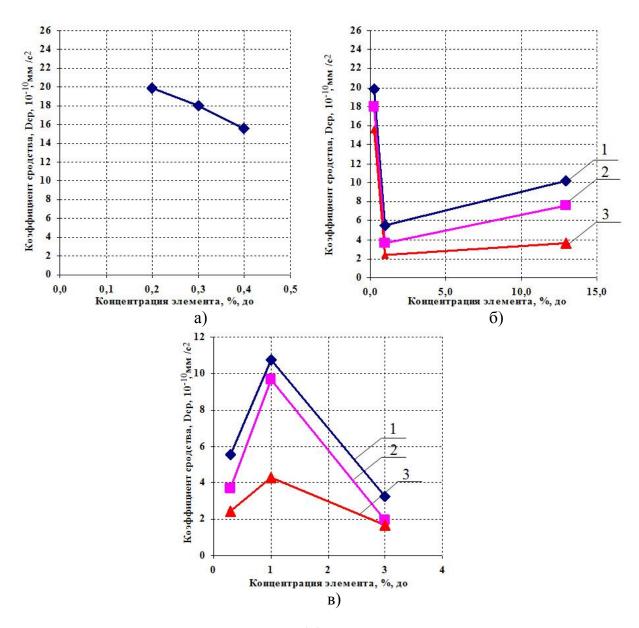


Рис. 3. Зависимость коэффициента химического сродства различных сталей от концентрации в стали: а — углерода; б — хрома, при концентрации углерода 1-0.2, 2-0.3 и 3-0.4 %; в — никеля, при концентрации углерода 1-0.2, 2-0.3 и 3-0.4 %

Прогнозирование интенсивности физико-химического взаимодействия различных шлифуемых материалов в зависимости от их химсостава позволит при определении величины износа абразивного зерна учитывать физико-химическое взаимодействие абразивного и обрабатываемого материала, что открывает возможности прогнозирования эксплуатационных показателей шлифования — составляющих силы [10], шероховатости [11], а также прогнозировать выходные показатели обработки полимерно-композитных слоистых систем [12].

Библиографический список

- 1. Лоладзе, Т.Н. Износ алмазов и алмазных кругов / Т.Н. Лоладзе, Г.В. Бокучава. М.: Машиностроение, 1967. 112 с.
- 2. Маслов, Е.Н. Теория шлифования материалов / Е.Н. Маслов. М.: Машиностроение, 1974. 320 с.
- 3. Филимонов, Л.Н. Стойкость шлифовальных кругов / Л.Н. Филимонов. Л.: «Машиностроение», 1973. 134 с.
- 4. Мишнаевский, Л.Л. Износ шлифовальных кругов / Л.Л. Мишнаевский. Киев: Наукова думка, 1982. 188 с.
- 5. Носенко, В.А. Вероятности видов изнашивания вершин зерен круга и их зависимость от силы контактного взаимодействия и твердости абразивного инструмента / В.А. Носенко, М.В. Даниленко // Известия ВолгГТУ. 2009. Т. 8. N_2 5. С. 20—23.
- 6. Yossifon, S. Wheel wear when grinding workpieces exhibiting high adhesion / S. Yossifon, C. Rubenstein // International Journal of Machine Tool Design and Research. Vol. 22. 1982. Pp. 159–176.
- 7. Deutsch, S.J. Analysis of mechanical wear during grinding by empirical-stochastic models / S.J. Deutsch // Wear. Vol. 29. 1974. Pp. 247–257.
- 8. Ардашев, Д.В. Прогнозирование величины износа абразивного зерна в результате физико-химического взаимодействия с обрабатываемым материалом / Д.В. Ардашев // СТИН. 2014. № 11. С. 33–37.
- 9. Ардашев, Д.В. Прогнозирование величины износа абразивного зерна в результате физико-химического взаимодействия с обрабатываемым материалом / Д.В. Ардашев // СТИН. 2014. № 11. С. 33–37.
- 10. Дьяконов, А.А. Имитационное моделирование процессов шлифования на основе применения высокопроизводительных кластеров и технологий параллельных вычислительных процессов / А.А. Дьяконов, Д.В. Ардашев, А.В. Лепихов // Фундаментальные и прикладные проблемы техники и технологии. − 2011. − № 2/2(286) − С. 29–34.
- 11. Шипулин, Л.В. Разработка комплексной имитационной модели плоского шлифования периферией круга / Л.В. Шипулин // Наука. ЮУрГУ: материалы 65-ой Научной конференции. Челябинск: Издательский центр ЮУрГУ, 2013. С. 277–280.
- 12. Шмидт, И.В. Напряженное состояние полимерно-композитной слоистой системы при механической обработке резанием / И.В. Шмидт // Наукоемкие технологии в машиностроении. 2013. $Notemath{\Omega}$ 7. C. 27–31.

<u>К содержанию</u>