ОЦЕНКА РАЗМЕРНОСТИ ХАУСДОРФА НЕКОТОРЫХ ФРАКТАЛОВ ИЗ ПЯТИКОНЕЧНЫХ ЗВЕЗД

А.А. Поляков

Проведена оценка размерности Хаусдорфа фракталов из пятиконечных звезд d0w(2w), d0w(3w), d0w(4w), d0w(2w3w), d0w(3w4w), d0w(4w3w) в обозначениях автора. Размерности лежат в пределах от 1,9269 для наиболее плотного фрактала d0w(2w), до 1,1962 фрактала d0w(4w). Приведены рекуррентные формулы для вычислений. Вычисление общего количества точек предфракталов проводилось без округлений, применялась арифметика с варьируемой точностью, расчеты велись для предфракталов до 200000 порядка.

Ключевые слова: фракталы; мозаика Пенроуза; фрактальная размерность; фракталы из пятиконечных звезд.

Паркет Пенроуза является наиболее простым примером квазипериодических двумерных решеток с пентагональной симметрией, он формируется из ромбов двух типов[1]. В работах де Брюина [2], предложившего современный вид паркета Пенроуза, полученного проекцией 5-мерной кубической решетки на плоскость, отмечено, что возможно построение трехмерной поверхности из ромбов одного типа, ориентированных в трехмерном пространстве различным образом, причем проекция такой конструкции на плоскость даст паркет Пенроуза. Такая поверхность была названа кровлей Виринга ("Wieringa roof"). Вершины ромбов в кровле Виринга расположены в четырех параллельных слоях. В работах [3-5] проанализировано строение этих слоев, оказалось, что все точки в них являются вершинами правильных пятиконечных звезд двух ориентаций. Эти звезды можно выбрать одинакового, наименьшего размера. Они могут иметь различное взаимное расположение: звезды могут быть расположены отдельно, касаться друг друга вершинами и частично пересекаться. Были выделены кластеры звезд, наблюдаемые в паркете Пенроуза, которые можно описать следующим

образом: центры звезд в кластере расположены по 10 вершинам звезд большего размера. Отношение размеров таких обобщенных звезд — центров звезд к размерам исходных звезд равно золотому сечению, взятому в целой степени; также было предложено [5] рассматривать кластеры кластеров звезд. Бесконечная последовательность таких обобщенных кластеров является фракталом [6]. Различные фракталы из пятиконечных звезд, похожие на кластеры, наблюдаемые в паркете Пенроуза могут быть построены дефляционным образом — заданием инициатора и генератора (разбиение фигуры на все более мелкие элементы), а также методом инфляции, как при построении квазипериодических решеток (соединением полученных кластеров в бесконечно возрастающие фигуры). В работе [7] показано, как можно связать оба подхода к построению фрактала из пятиконечных звезд, дано строгое описание методики построения таких фракталов.

В настоящей статье рассматривается методика подсчета фрактальных размерностей некоторых фракталов из пятиконечных звезд.

Будет использоваться относительное дефляционное [7] описание фракталов: звезды могут иметь две ориентации, связанные между собой операцией инверсии относительно точки.

Изображаем исходную звезду размером $a_{\rm o}=a\tau^{-N_{\rm o}}$ и одной из двух ориентаций ("w" или "b"). Обозначаем ее символами $N_{\rm o}c_{\rm o}$, где $c_{\rm i}o=$ "\" " Или "b\" . Здесь $\tau=0.5+0.5\cdot 5^{0.5}\approx 1.618$ — золотое сечение.

Обобщенные звезды первого шага ориентации c_1 и размера $a_1 = a\tau^{-\mathbf{I}(N_0 + N_1)}$, располагается так, что их центры совпадают с вершинами звезд предыдущего шага. Точки предыдущего шага удаляются. Ориентацию будем обозначать "w", если она совпадает с этой характеристикой предыдущего шага, иначе — "b".

Обобщенные звезды і-го этапа, с размерами $a_i = a\tau^{-\sum_{k=0}^i N_k}$ и относительной ориентацией c_i , располагаем так, что их центры совпадают с вершинами предфрактала предыдущего этапа. При этом совпадающие вершины учитываются один раз, предыдущий предфрактал удаляется.

Среди возможных вариантов можно выделить такие фракталы из пятиконечных звезд, у которых в относительном дефляционном описании бесконечно повторяется последовательность операций, например:

$$^{d}0w\;N_{1}c_{1}N_{1}c_{1}N_{1}c_{1}\ldots=^{d}0w\;(N_{1}c_{1})\;.$$

Скобки здесь символизируют повторение, как в бесконечной дроби. В общем случае:

$${}^{d}N_{0} c_{0}N_{1}c_{1}N_{2}c_{2} ... N_{k}c_{k}(N_{k+1}c_{k+1} ... N_{m}c_{m}).$$

В таких фракталах наиболее ярко выражено самоподобие (повторение характеристик в меньших масштабах). В данной работе будут рассчитаны размерности фракталов $^{d}0w(2w)$, $^{d}0w(3w)$, $^{d}0w(4w)$, $^{d}0w(2w3w)$, $^{d}0w(3w4w)$.

Оценка фрактальной размерности Хаусдорфа-Безиковича [6] дается соотношением:

$$d_H = \lim_{\varepsilon \to 0} \frac{\ln N(\varepsilon)}{\ln \frac{1}{\varepsilon}} ,$$

где ε — диаметр (радиус) дисков, покрывающих множество точек фрактала, $N(\varepsilon)$ — число таких дисков, необходимых для покрытия. У фрактала $^dow(2w)$, (который в [4, 5] назывался «Бутон из Бутонов») лепестки некоторых звезд взаимно пересекаются, что усложняет расчет размерности. В связи с этим проводился подсчет его фрактальной размерности покрытием дисками лепестков звезд и покрытием ядер звезд (рис. 1). Оказалось, что оценки размерности при увеличении порядка фрактала сходятся, например, при порядке предфрактала 30000 разница составляет 0,0025 % и уменьшается с ростом порядка. В данной работе оценка фрактальной размерности проводится покрытием дисками ядер звезд.

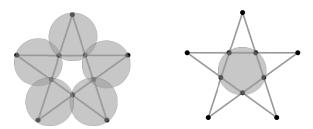


Рис. 1. Сравнение покрытия дисками лепестков и ядра звезды

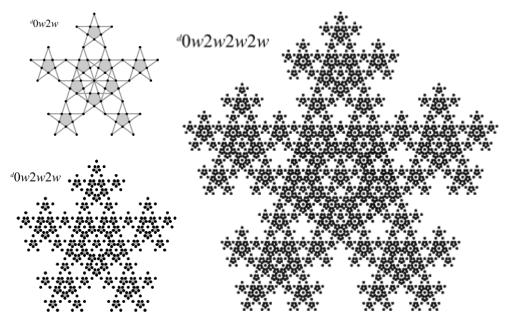


Рис. 2. Фрактал d0w(2w). Показаны предфракталы d0w2w, d0w2w2w, d0w2w2w2w.

Рассмотрим подробнее подсчет элементов фрактала $^{d}0w(2w)$ на каждом шаге роста. Каждая вершина предфрактала на следующем шаге становится звездой, поэтому количество ядер звезд равно количеству вершин предфрактала предыдущего порядка. На первом шаге () предфрактал — звезда — имеет 10 вершин ($N_1 = 10$). На втором шаге (рис. 2. — предфрактал $^{d}0w2w$) $N_2 = 10N_1 - 24 = 76$ вершин, здесь совпадают 10 вершин звезд лепестков и ядра предфрактала, 10 вершин звезд внутри ядра оказываются общими и в центре совпадают вершины 5 звезд. На третьем шаге ($^{d}0w2w2w$) $N_2 = 10N_2 - 24N_1 + 5 = 525$ вершин. Добавляются 5 вершин, так как звезды, которые совпадают внутри ядра предфрактала и поэтому вычитаются, касаются друг друга вершинами, то есть точки удаляются два раза. Заметим, что такая логика подсчета соответствует, инфляционному [7], а не дефляционному подходу к описанию фрактала. Рекуррентная формула для подсчета вершин предфрактала порядка k:

$$N_k = 10N_{k-1} - 24N_{k-2} + 5 + 5\sum_{i=1}^{k-3} N_i$$

Размер дисков, покрывающих ядра звезд на каждом шаге будет равен:

$$\varepsilon_k = \tau^{-2(k-1)}$$

Тогда оценка фрактальной размерности k-го предфрактала ${}^{d}\mathbf{0}w(2w)_{k}$:

$$d_H(k) = \frac{\ln N_{k-1}}{2(k-1)\ln \tau}$$

Здесь число элементов — ядер звезд равно числу вершин звезд на предыдущем шаге: N_{k-1} .

У фрактала $^{d}0w$ (4w) лепестки звезд не пересекаются и не касаются друг друга, поэтому $N_k=\mathbf{10}^k$ и $\varepsilon_k=\tau^{-4}$ ($\kappa-1$).

$$d_H = \frac{(k-1)\ln 10}{4(k-1)\ln \tau} = \frac{\ln 10}{4\ln \tau} \approx 1.196$$

В ядре предфрактала d_0w_3w (рис. 3) звезды касаются лепестками, поэтому число точек уменьшается на 5 единиц. Общая рекуррентная формула:

$$N_k = 10N_{k-1} - 5N_{k-2}.$$

Фрактальная размерность:

$$d_H(k) = \frac{\ln N_{k-1}}{3(k-1)\ln \tau}.$$

Фрактал d 0w(3w4w) : N_1 = 10, N_2 = 10 N_1 - 5, N_3 = 10 N_2 . Рекуррентные формулы отличаются для четных и нечетных шагов. При четном k:

$$N_k = 10N_{k-1} - 5N_{k-2}$$

При нечетном k:

$$N_k = 10N_{k-1}$$

Оценка фрактальной размерности Хаусдорфа-Безиковича для нечетного k:

$$d_H(k) = \frac{\ln N_{k-1}}{3.5(k-1)\ln \tau}.$$

Фрактал d 0w(2w3w): если принять $N_{-2}=N_{-1}=0$, $N_{0}=1$, $N_{1}=10$, то визуальный анализ полученных предфракталов позволяет записать для четного k:

$$N_k = 10N_{k-1} - 24N_{k-2} - 5N_{k-3} - 5N_{k-4}$$

Число точек предфрактала при нечетном к:

$$N_k = 10N_{k-1} - 5N_{k-2} - 5N_{k-3}$$

Оценка фрактальной размерности для нечетного шага k:

$$d_H(k) = \frac{\ln N_{k-1}}{2.5(k-1)\ln \tau}.$$

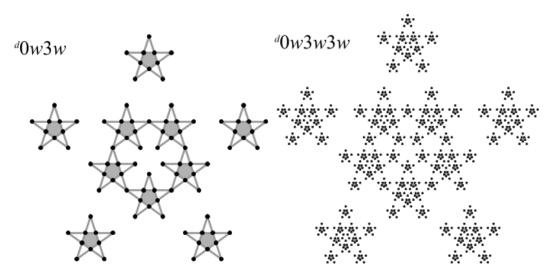


Рис. 3. Фрактал d0w(3w). Показаны предфракталы d0w3w, d0w3w3w

Начальные шаги построения фрактала $^{d}0w(2w3w)$ показаны на рис. 4.

Проведены расчеты вплоть до 200000 шага. Для расчета использовалась арифметика с увеличивающимся количеством значащих цифр (variable-precision arithmetic программного пакета MATLAB), чтобы не накапливались ошибки при итерациях. Число значащих цифр выбиралось равным числу шагов. Результаты расчетов приведены в таблице.

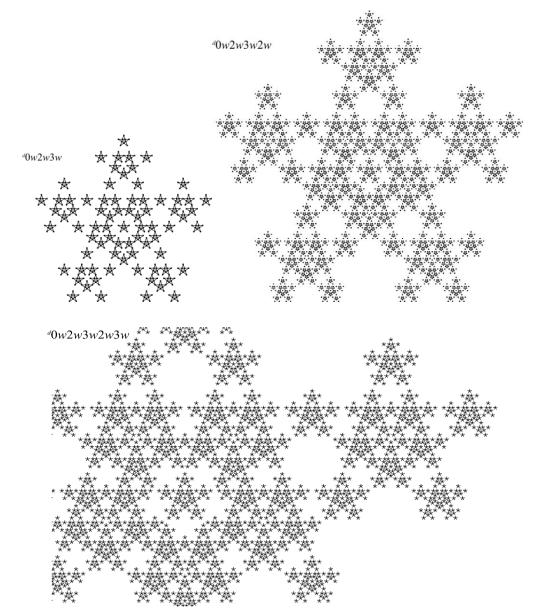


Рис. 4. Фрактал d0w(2w3w). Показаны предфракталы d0w2w3w, d0w2w3w2w, часть предфрактала d0w2w3w2w3w

Таблица Оценка размерности Хаусдорфа-Безиковича фракталов из пятиконечных звезд d0w(2w), d0w(3w), d0w(4w), d0w(2w3w), d0w(3w4w), d0w(4w3w)

Тип фрактала	Размерность	Комментарии
d0w(2w)	1.92691	200 000 итераций
d0w(3w)	1.55743	200 000 итераций
		ln 10
d0w(4w)	1.19624	точное значение $\frac{1}{4}$ $\ln \tau$
d0w(2w3w)	1.75172	200 000 итераций
d0w(3w4w)	1.35191	200 000 итераций
d0w(4w3w)	1.35191	методика совпадает с предыдущей

При больших значениях шага итерации, все оценки (кроме d0w(4w)) характеризуются убывающими последовательностями. С большой вероятностью приведенные значения с точностью до 4 знака после десятичной точки характеризуют размерность приведенных фракталов.

Высокое значение размерности Хаусдорфа фрактала $^{d_{0w}(2w)}$ говорит о плотном заполнении плоскости вершинами звезд, что характерно для самопересекающихся фракталов. В то же время не самопересекающиеся фракталы $d_{0w}(4w)$ имеют размерность, приближающуюся к размерности линии.

Библиографический список

- 1. Penrose, R. Pentaplexity: A Class of Nonperiodic Tilings of the Plane / R. Penrose // Eureka. 1978. 39. Pp. 16–22.
- 2. de Bruijn, N.G. Algebraic theory of Penrose's non-periodic tilings of the plane, I, II / N.G. de Bruijn // Indagationes mathematicae.— 1981.— V. 43 (1), P. 39 66.
- 3. Polyakov, A.A. Presentation of Penrose tiling as set of overlapping pentagonal stars / A.A. Polyakov // Journal of Physics: Conference Series. Vol. 98. 2008, 012025.
- 4. Поляков, А.А. Описание паркета Пенроуза посредством взаимоперекрывающихся пятиугольных звезд / А.А. Поляков // Строение и свойства металлических и шлаковых расплавов: труды XII Российской конф. Екатеринбург: Уральский центр академического обслуживания. 2008. Т. 1. С. 242—245.
- 5. Polyakov, A.A. Fractal structures of regular pentagonal stars in Penrose tiling / A.A. Polyakov // Russian Metallurgy (Metally). 2012. I. 8, Pp. 719–722.
- 6. Мандельброт, Б. Фрактальная геометрия природы / Б. Мандельброт // М.: Институт компьютерных исследований. -2002.-656 с.
- 7. Поляков, А.А. Инфляционный и дефляционный подходы к описанию фрактала из пятиконечных звезд / А.А. Поляков // Наука ЮУрГУ. Секции естественных наук: материалы 66-й науч. конф. Челябинск: Издательский центр ЮУрГУ, 2014. С. 247–253.

<u>К содержанию</u>