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Inheriting and continuing the tradition, dating back to the Hill�Iosida�Feller�Phillips�

Miyadera theorem, the new way of construction of the approximations for strongly

continuous operator semigroups with kernels is suggested in this paper in the framework of

the Sobolev type equations theory, which experiences an epoch of blossoming. We introduce

the concept of relatively radial operator, containing condition in the form of estimates for

the derivatives of the relative resolvent, the existence of C0-semigroup on some subspace

of the original space is shown, the su�cient conditions of its coincidence with the whole

space are given. The results are very useful in numerical study of di�erent nonclassical

mathematical models considered in the framework of the theory of the �rst order Sobolev

type equations, and also to spread the ideas and methods to the higher order Sobolev type

equations.

Keywords: Sobolev type equation, strongly continuous semigroups of operators with

kernals, approximations of semigroups.

Introduction

Let U and F be Banach spaces, operator L ∈ L(U ;F), operator M ∈ Cl(U ;F), function
f(·) : R → F . Consider the Cauchy problem

u(0) = u0 (1)

for the operator-di�erential equation

L u̇ =Mu+ f. (2)

If the operator L is continuously invertible, then the equation (2) can be reduced to a pair
of equivalent equations

u̇ = Su+ h, ġ = Tg + f. (3)

Here the operators S = L−1M ∈ Cl(U), dom S = dom M, T = ML−1 ∈ Cl(F), dom T =
L[dom M ], the function h = L−1f : R → U . It is convenient to consider the equation (3) in the
frame of the equation

v̇ = Av + z (4)

on the Banach space V. Here A : dom A→ V, dom A = V, z(·) : R → V .
The Cauchy problem

v(0) = v0, v0 ∈ dom A (5)

for the homogeneous equation
v̇ = Av (6)

is completely studied with the help of the semigroups theory. The main result of the classical
semigroups theory [1] is a theorem of Hill�Iosida�Feller�Phillips�Miyadera (the HIFPM theorem),
establishing a bijection between the resolving semigroup of the homogeneous equation (6) and
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the operator A, called the in�nitesimal generator of a semigroup. The criterion for the operator A
being the in�nitesimal generator of a semigroup (or generating the semigroup) are some conditions
on the resolvent Rµ(A) = (µI−A)−1 of the operator A. Depending on these conditions, operator
A generates the analytical group, analytical semigroup or strongly continuous (C0) semigroup.

The theory of degenerate operator semigroups developed by G.A.Sviridyuk and his disciples
generalizes these results to the case of the Sobolev type equations [2�6]. It also consists of three
parts: analytical groups, analytical semigroups and, �nally, strongly continuous semigroups with
kernels. We suggest the alternative (in comparison to [7]) method of construction of C0-semigroup
for the equation (2). To our opinion, these results are very useful for the numerical modelling of
di�erent processes based on the �rst order Sobolev type equations and to spread methods to the
higher order Sobolev type equations [8].

1. Relatively radial operators

Following [2, 7], introduce the L-resolvent set ρL(M) = {µ ∈ C : (µL − M)−1 ∈
L(F ;U)} and the L-spectrum σL(M) = C \ ρL(M) of operator M . The operator functions
(µL−M)−1, RL

µ(M) = (µL−M)−1L, LL
µ(M) = L(µL−M)−1 are called L-resolvent, right

and left L-resolvents of operator M .

De�nition 1. The operator M is called radial with respect to operator L (shortly, L-radial), if
(i) ∃a∈ R ∀µ > a µ∈ ρL(M)
(ii) ∃K > 0 ∀µ > a ∀n∈ N

max{∥ 1

n!

dn

dµn
RL

µ(M)∥L(U), ∥
1

n!

dn

dµn
LL
µ(M)∥L(F)} ≤ K

(µ− a)n+1

Remark 1. Without loss of generality one can put a = 0 in de�niton1.

Remark 2. If there exists the operator L−1 ∈ L(F ;U), then operator M is L-radial exactly,
when the operator L−1M ∈ Cl(U) (or, equivalently, the operator ML−1∈Cl(F)) is radial.

Set U0 = kerL F0 = kerLL
µ(M)). By L0 (M0) denote restriction of the operator L (M)

to lineal U0 (dom M0 = U0 ∩ dom M).

De�nition 2. Weakly L-radial operator is an operator M for which condition (i) is satis�ed as

well as condition (ii) when n = 1 in De�nition 1.

Theorem 1. [2] Let the operator M be weakly L-radial. Then:
(i) any vector φ∈ kerL \ {0} does not have M -adjoint vectors;

(ii) kerRL
µ(M) ∩ im RL

µ(M) = {0}, kerLL
µ(M) ∩ im LL

µ(M) = {0}.
(iii) there exists the operator M−1

0 ∈ L(F0;U0).

By U1 (F1) denote the closure of the lineal im RL
µ(M) ( im LL

µ(M)) by norm of the space
U (F).

Lemma 1. [2] Let the operator M be weakly L-radial. Then
(i) lim

µ→+∞
µRL

µ(M)u = u ∀u ∈ U1;

(ii) lim
µ→+∞

µLL
µ(M)f = f ∀f ∈ F1.

By Ũ (F̃) denote the closure of the lineal U0+̇ im RL
(µ,p)(M) (F0+̇ im LL

(µ,p)(M)) by norm

of the space U (F). Obviously, U1 (F1) is the subspace in Ũ (F̃).
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Lemma 2. Let the operator M be weakly L-radial. Then Ũ = U0 ⊕ U1, F̃ = F0 ⊕F1.

2. The resolving operator semigroups

Consider two equivalent forms of the equation (2)

RL
α(M)u̇ = (αL−M)−1Mu, (7)

LL
α(M)ḟ =M(αL−M)−1f (8)

as concrete interpretations of the equation

Av̇ = Bv, (9)

de�ned on a Banach space V, where the operators A,B ∈ L(V)

De�nition 3. The vector-function v ∈ C(R+;V), di�erentiable on R+ and satisfying (9) is

called a solution of the equation (9).

A little away from the standard [1], following [7] de�ne

De�nition 4. The mapping V . ∈ C(R+;L(V)) is called a semigroup of the resolving operators

(a resolving semigroup) of the equation (9), if

(i) V sV tv = V s+tv for all s, t ≥ 0 and any v from the space V;
(ii) v(t) = V tv is a solution of the equation (9) for any v from a dense in V set.

The semigroup is called uniformly bounded, if

∃C > 0 ∀t ≥ 0 ∥V t∥L(V) ≤ C.

Theorem 2. Let the operator M be L-radial. Then there exists a uniformly bounded and

strogly continuous resolving semigroup of the equation (7) ((8)), treated on the subspace Ũ (F̃),
presented in the form:

U t = s− lim
k→+∞

(−1)k−1

(k − 1)!

(
k

t

)k ( dk−1

dµk−1
RL

µ(M)

)∣∣∣∣
µ= k

t

,

(F t = s− lim
k→+∞

(−1)k−1

(k − 1)!

(
k

t

)k ( dk−1

dµk−1
LL
µ(M)

)∣∣∣∣
µ= k

t

).

Proof. Denote the following families of operators:

U t
k =

(−1)k−1

(k − 1)!

(
k

t

)k ( dk−1

dµk−1
RL

µ(M)

)∣∣∣∣
µ= k

t

Note that
∀u ∈ U0 U t

ku = 0. (10)

Since the operatorM is L-radial, approximations of are uniformly bounded by a constant K from
De�nition 1:

∥U t
k∥L(U) ≤ K ∀t ∈ R+ ∀k ∈ N. (11)

Let us take u ∈ dom M and �nd the derivative

d

dt
U t
ku =

d

dt

(
(−1)k−1

(k − 1)!

(
k

t

)k ( dk−1

dµk−1
RL

µ(M)

)∣∣∣∣
µ= k

t

u

)
=
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=
(−1)k−1

(k − 1)!
kk
(
−k 1

tk+1

dk−1

dµk−1
RL

µ(M)− k

tk+2

dk

dµk
RL

µ(M)

)∣∣∣∣
µ= k

t

u =

=
(−1)k−1

(k − 1)!

(
k

t

)k+1 (
− dk−1

dµk−1
RL

µ(M) +
k

t

dk−1

dµk−1

(
RL

µ(M)
)
RL

µ(M)

)∣∣∣∣
µ= k

t

u =

=
(−1)k−1

(k − 1)!

(
k

t

)k+1 dk−1

dµk−1

(
RL

µ(M)
)(k

t
RL

µ(M)− I

)∣∣∣∣
µ= k

t

u =

=
k

t
U t
k

(
k

t
L−M

)−1

Mu

Thus,
d

dt
U t
ku = U t

k

(
L− t

k
M
)−1

Mu ∀u ∈ dom M. (12)

Now let u ∈ imRL
µ(M), i.e. u = RL

β (M)v in some β > 0 è v ∈ U . Proof, then

lim
t→0+

U t
ku = u. (13)

Make the change µ = k
t .

lim
t→0+

U t
ku = lim

µ→+∞

(−1)k−1

(k − 1)!
µk

dk−1

dµk−1
RL

µ(M)u =

= lim
µ→+∞

k−1∑
m=1

(
(−1)m

m!
µm+1 d

m

dµm
RL

µ(M)− (−1)m−1

(m− 1)!
µm

dm−1

dµm−1
RL

µ(M)

)
u+ lim

µ→+∞
µRL

µ(M)u =

= lim
µ→+∞

k−1∑
m=1

(−1)m−1

(m− 1)!
µm
(
− µ

m

dm

dµm
RL

µ(M)− dm−1

dµm−1
RL

µ(M)

)
u+ lim

µ→+∞
µRL

µ(M)u =

= lim
µ→+∞

k−1∑
m=1

(−1)m−1

(m− 1)!
µm

dm−1

dµm−1
(RL

µ(M))(µRL
µ(M)− I)u+ lim

µ→+∞
µRL

µ(M)u. (14)

Due to ∥ −1
(m−1)!µ

m dm−1

dµm−1 (R
L
µ(M))∥L(U) ≤ K for any µ > 0 under L-radiality of the operator

M , we get ∥∥∥∥∥
k−1∑
m=1

(−1)m−1

(m− 1)!
µm

dm−1

dµm−1
(RL

µ(M))(µRL
µ(M)− I)u

∥∥∥∥∥
U

≤

≤ (k − 1)K∥µRL
µ(M)u− u)∥U → 0, µ→ +∞.

The second limit in (14) is equal to u.
Now for the same vector u consider the di�erence

U t
ku− U t

l u =

t∫
0

d

ds

(
U t−s
l U s

ku
)
ds =

=

t∫
0

(
U t−s
l U s

k

(
L− s

k
M
)−1

M− U t−s
l U s

k

(
L− t− s

l
M

)−1

M

)
uds =
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=

t∫
0

U t−s
l U s

k

(
s

k
− t− s

l

)(
L− s

k
M
)−1

M

(
L− t− s

l
M

)−1

M(RL
β (M))2vds =

=

t∫
0

U t−s
l U s

k

(
s

k
− t− s

l

)
k

s
RL

k
s

(M)
l

t− s
RL

l
t−s

(M)((βL−M)−1M)2vds.

Taking into account (11), we get

∥U t
ku− U t

l u∥U ≤ K2

t∫
0

∣∣∣∣ sk − t− s

l

∣∣∣∣ kl

s(t− s)

K2

kl
s(t−s)

∥((βL−M)−1M)2v∥Uds ≤

≤ K4t2

2

(
1

k
+

1

l

)
∥((βL−M)−1M)2v∥U . (15)

From (15), (10), (11) and density of im RL
µ(M) in U1 it follows the existence of the limit

Ũ t = s− lim
k→∞

U t
k, Ũ t ∈ L(Ũ), ∥Ũ t∥L(Ũ)

≤ K ∀t > 0.

Inequality (15) shows that U t
ku uniformly with respect to t ∈ (0, T ] converges to Ũ tu. Thus, the

family {Ũ t : t > 0} is strongly continuous with respect to t, because due to continuity of right
L-resolvents of the operator it follows a strong continuity of the family {U t

k : t > 0} for any k ∈ N.
In order to extend the strong continuity of {Ũ t : t > 0} up to zero, we de�ne an element of the
family of operators Ũ0 as a strong limit:

Ũ0 = s− lim
t→0+

Ũ t.

Due to (10)

∀u ∈ U0 Ũ0u = lim
t→0+

Ũ tu = lim
t→0+

lim
k→∞

U t
ku = 0

In addition, using the above-mentioned uniform convergence, it can be shown that

∀u ∈ U1 Ũ0u = lim
t→0+

Ũ tu = lim
t→0+

lim
k→∞

U t
ku = lim

k→∞
lim
t→0+

U t
ku = u.

So, we get that Ũ0 = P̃ .
Note that

U t
kl =

(−1)kl−1

(kl − 1)!

(
kl

t

)kl ( dkl−1

dµkl−1
RL

µ(M)

)∣∣∣∣
µ= kl

t

=

=
(−1)kl−2

(kl − 2)!

(
kl

t

)kl ( dkl−2

dµkl−2

(
RL

µ(M)
)
RL

µ(M)

)∣∣∣∣
µ= kl

t

= ... =

=
(−1)l−1

(l − 1)!

(
kl

t

)kl ( dl−1

dµl−1

(
RL

µ(M)
)
(RL

µ(M))(k−1)l

)∣∣∣∣
µ= kl

t

=

=

((
l

t/k

)l (−1)l−1

(l − 1)!

dl−1

dµl−1
[RL

µ(M)]

)k
∣∣∣∣∣∣
µ= kl

t

=

(
U

t
k
l

)k

. (16)
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From (11) it follows, that lim
l→+∞

(
U

t
k
l

)k

=
(
Ũ

t
k

)k
. Indeed, at u ∈ Ũ

∥∥∥∥∥
(
U

t
k
l

)k

u−
(
Ũ

t
k

)k
u

∥∥∥∥∥
U

=

∥∥∥∥∥
k−1∑
m=0

(
U

t
k
l

)k−m−1 (
Ũ

t
k

)m(
U

t
k
l − Ũ

t
k

)
u

∥∥∥∥∥
U

≤

≤ kKk−1

∥∥∥∥U t
k
l u− Ũ

t
ku

∥∥∥∥
U
.

Tending in identity (16) l → +∞, we obtain

Ũ t =
(
Ũ

t
k

)k
. (17)

Let us show that hence and from the strong continuity it follows that {Ũ t : t ≥ 0} is a semigroup.
Taking rational s = k/l è t = m/n using (17) twice, we get

Ũ sŨ t = Ũ
kn
ln Ũ

lm
ln =

(
Ũ

1
ln

)kn (
Ũ

1
ln

)lm
=
(
Ũ

1
ln

)kn+lm
= Ũ

kn+lm
ln = Ũ s+t.

For arbitrary real numbers s, t > 0 there exist sequences of rational numbers {sn : n ∈ N}, {tn :
n ∈ N} such that lim

n→∞
sn = s, lim

n→∞
tn = t. Then,

∀n ∈ N Ũ snŨ tn = Ũ sn+tn . (18)

Since,

∥Ũ snŨ tnu− Ũ sŨ tu∥U ≤ ∥Ũ sn∥ ˜L(U)
∥Ũ tnu− Ũ tu∥U + ∥Ũ snŨ tu− Ũ sŨ tu∥U ≤

≤ K∥Ũ tnu− Ũ tu∥U + ∥Ũ snŨ tu− Ũ sŨ tu∥U , (19)

tending n → ∞ in (18), (19) and using the strong continuity with respect to t of the operators
family {Ũ t : t ≥ 0}, we obtain the desired.

Further, let u1 = (RL
β (M))2v for some β > 0 and v ∈ U . Then

∥U t
1u

1 − Ũ tu1∥U = lim
k→∞

∥U t
1u

1 − U t
ku

1∥U ≤

≤ lim
k→∞

K4t2

2

(
1 +

1

k

)
∥((βL−M)−1M)2v∥U =

K4t2

2
∥((βL−M)−1M)2v∥U ,

due to (15).

U t
1u

1 =

(
1

t
RL

1
t

(M)

)
u1 =

(
I+

(
1

t
L−M

)−1

M

)
u1=

= u1 +RL
1
t

(M)RL
β (M)(βL−M)−1Mv =

= u1 + t(L− tM)−1(L− tM + tM)RL
β (M)(βL−M)−1Mv =

= tRL
β (M)(βL−M)−1Mv + tRL

1
t
(M)RL

β (M)((βL−M)−1M)2v.

Therefore ∥∥∥∥∥ Ũ t − I

t
u1 −RL

β (M)(βL−M)−1Mv

∥∥∥∥∥
U

≤
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≤
∥∥∥∥U t

1 − I

t
u1 −RL

β (M)(βL−M)−1Mv

∥∥∥∥
U
+

∥∥∥∥∥ Ũ t − U t
1

t
u1

∥∥∥∥∥
U

≤

≤ tK∥((βL−M)−1M)2v∥U +
K4t

2
∥RL

β (M)((βL−M)−1M)2v∥U .

Tending t→ 0+ we obtain, that

lim
t→0+

Ũ t − I

t
u1 = RL

β (M)(βL−M)−1Mv. (20)

Act on (20) by the operator Ũ s and get the di�erentiability on the right of the semigroup at
this element u1 = (RL

β (M))2v at point s > 0. In order to show the di�erentiability on the left at
this point, one can consider the expression

Ũ s−t − Ũ s

−t
u1 =

Ũ s−t(Ũ t − I)

t
u1, s > t > 0,

proceed to the limit when t→ 0+, using the uniform boundedness of the semigroup. So, by virtue
of (20)

d

dt
Ũ t(RL

β (M))2v = Ũ tRL
β (M)(βL−M)−1Mv.

Act on last identity by the operator RL
α(M).

By construction Ũ t commutes with the operators RL
α(M) and (αL − M)−1M for the

corresponding u1, therefore by (20) we obtain

RL
α(M)

d

dt
Ũ tu1 = (αL−M)−1MŨ tu1. (21)

Obviously, for u0 ∈ U0 Ũ s(u0 + u1) = Ũ su1. Then one can change u1 by u = u0 + u1 ∈
U0+̇ im(RL

µ(M))2 in identity (21). Thus, the function u(t) = Ũ tu is the solution of the equation

(7) for arbitrary u from the dense in Ũ lineal U0+̇ im(RL
µ(M))2.

(For the semigroup F̃ t = s− lim
k→∞

F t
k, which is constructed by means of the left L-resolvent,

the proof is identical).

2
The semigroup Ũ t (F̃ t) at �rst is de�ned not on the whole space U (F), but on some subspace

Ũ (F̃). Introduce the su�cient condition of their coincidence: U = Ũ (F = F̃).

Theorem 3. [2] Let the space U (F) be re�exive, the operator M be weakly L-radial. Then
U = U0 ⊕ U1 (F = F0 ⊕F1).

De�nition 5. Operator M is called strongly L-radial on the right (on the left), if it is L-radial
and

∥RL
µ(M)(λL−M)−1Mu∥U ≤ const(u)

λµ
∀u ∈ dom M

(there exists a dense in F lineal
◦
F such, that

∥M(λL−M)−1LL
µ(M)f∥F ≤ const(f)

λµ
∀f ∈

◦
F)

for any λ, µ > 0.

Theorem 4. [2] Let the operator M be strongly L-radial on the right (on the left). Then U =
U0 ⊕ U1 (F = F0 ⊕F1).
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Remark 3. Obviously, that under the condition of strong L-radiality of operator M on the
right (on the left) the resolving semigroup of the equation (7) ((8)) is de�ned on the whole space
U (F), and the projector P lim

µ→+∞
µRL

µ(M) (Q = s− lim
µ→+∞

µLL
µ(M)) is it's unit.
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ÑÈËÜÍÎ ÍÅÏÐÅÐÛÂÍÛÅ ÏÎËÓÃÐÓÏÏÛ ÎÏÅÐÀÒÎÐÎÂ.
ÀËÜÒÅÐÍÀÒÈÂÍÛÉ ÏÎÄÕÎÄ

À.À. Çàìûøëÿåâà

Íàñëåäóÿ è ïðîäîëæàÿ òðàäèöèþ, âîñõîäÿùóþ ê òåîðåìå Õèëëå�Èîñèäû�

Ôåëëåðà�Ôèëëèïñà�Ìèÿäåðû, â äàííîé ðàáîòå â ðàìêàõ òåîðèè óðàâíåíèé ñîáîëåâñêî-

ãî òèïà, êîòîðàÿ ïåðåæèâàåò ýïîõó ñâîåãî ðàñöâåòà, ðàññìîòðåí íîâûé ñïîñîá ïîñòðî-

åíèÿ àïïðîêñèìàöèé ñèëüíî íåïðåðûâíûõ ïîëóãðóïï îïåðàòîðîâ ñ ÿäðàìè. Ââîäèòñÿ

ïîíÿòèå îòíîñèòåëüíî ðàäèàëüíîãî îïåðàòîðà, ñîäåðæàùåå óñëîâèå â âèäå îöåíêè ïðî-

èçâîäíîé îòíîñèòåëüíîé ðåçîëüâåíòû, ïîêàçûâàåòñÿ ñóùåñòâîâàíèå C0-ïîëóãðóïïû íà

íåêîòîðîì ïîäïðîñòðàíñòâå èñõîäíîãî ïðîñòðàíñòâà, ïðèâîäÿòñÿ äîñòàòî÷íûå óñëî-

âèÿ åãî ñîâïàäåíèÿ ñî âñåì ïðîñòðàíñòâîì. Ðåçóëüòàòû áóäóò âåñüìà ïîëåçíûìè ïðè

÷èñëåííîì èññëåäîâàíèè ìíîãèõ íåêëàññè÷åñêèõ ìàòåìàòè÷åñêèõ ìîäåëåé, ðàññìàòðè-

âàåìûõ â ðàìêàõ òåîðèè óðàâíåíèé ñîáîëåâñêîãî òèïà ïåðâîãî ïîðÿäêà, à òàêæå äëÿ

ðàñïðîñòðàíåíèÿ èäåé è ìåòîäîâ íà óðàâíåíèÿ ñîáîëåâñêîãî òèïà âûñîêîãî ïîðÿäêà.

Êëþ÷åâûå ñëîâà: óðàâíåíèå ñîáîëåâñêîãî òèïà, ñèëüíî íåïðåðûâíûå ïîëóãðóïïû

îïåðàòîðîâ ñ ÿäðàìè, àïïðîêñèìàöèè ïîëóãðóïïû.
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