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STRONGLY CONTINUOUS OPERATOR SEMIGROUPS.
ALTERNATIVE APPROACH
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Inheriting and continuing the tradition, dating back to the Hill-Tosida—Feller—Phillips—
Miyadera theorem, the new way of construction of the approximations for strongly
continuous operator semigroups with kernels is suggested in this paper in the framework of
the Sobolev type equations theory, which experiences an epoch of blossoming. We introduce
the concept of relatively radial operator, containing condition in the form of estimates for
the derivatives of the relative resolvent, the existence of Cy-semigroup on some subspace
of the original space is shown, the sufficient conditions of its coincidence with the whole
space are given. The results are very useful in numerical study of different nonclassical
mathematical models considered in the framework of the theory of the first order Sobolev
type equations, and also to spread the ideas and methods to the higher order Sobolev type
equations.
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Introduction

Let U and F be Banach spaces, operator L € L(U;F), operator M € CI(U;F), function
f(:) : R — F. Consider the Cauchy problem

u(0) = ug (1)
for the operator-differential equation
Li=Mu+ f. (2)

If the operator L is continuously invertible, then the equation (2) can be reduced to a pair

of equivalent equations
t=8Su+h, g=Tg+ f. (3)
Here the operators S = LM € Cl(d), dom S =dom M, T =ML'ecCl(F), domT =
L[dom M], the function h = L™1f : R — U. It is convenient to consider the equation (3) in the
frame of the equation
V=Av+z (4)

on the Banach space V. Here A :dom A —V, dom A=V, z(-):R—= .
The Cauchy problem
v(0) = vy, vp € dom A (5)

for the homogeneous equation

0= Av (6)

is completely studied with the help of the semigroups theory. The main result of the classical
semigroups theory [1] is a theorem of Hill-Tosida—Feller—Phillips—Miyadera (the HIFPM theorem),
establishing a bijection between the resolving semigroup of the homogeneous equation (6) and
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the operator A, called the infinitesimal generator of a semigroup. The criterion for the operator A
being the infinitesimal generator of a semigroup (or generating the semigroup) are some conditions
on the resolvent R, (A) = (ul — A)~! of the operator A. Depending on these conditions, operator
A generates the analytical group, analytical semigroup or strongly continuous (Cp) semigroup.

The theory of degenerate operator semigroups developed by G.A.Sviridyuk and his disciples
generalizes these results to the case of the Sobolev type equations [2-6]. It also consists of three
parts: analytical groups, analytical semigroups and, finally, strongly continuous semigroups with
kernels. We suggest the alternative (in comparison to |7]) method of construction of Cp-semigroup
for the equation (2). To our opinion, these results are very useful for the numerical modelling of
different processes based on the first order Sobolev type equations and to spread methods to the
higher order Sobolev type equations [8].

1. Relatively radial operators

Following [2, 7], introduce the L-resolvent set p*(M) = {u € C : (uL — M)~ €
L(F;U)} and the L-spectrum o”(M) = C \ p“(M) of operator M. The operator functions
(uL— M)~ RE(M)=(uL—M)"'L, LL(M)=L(pL— M)" are called L-resolvent, right
and left L-resolvents of operator M.

Definition 1. The operator M is called radial with respect to operator L (shortly, L-radial), if
(i) JacR VYu>a pe p*(M)
(i) IK >0 VYu>a VneN

1 d" K
LL(M)HL(J-‘)} < W

L
maX{HmeH(M)”L(u)v”HW m (i

Remark 1. Without loss of generality one can put a = 0 in definitonl.

Remark 2. If there exists the operator L' € £(F;U), then operator M is L-radial exactly,
when the operator LM € CI(U) (or, equivalently, the operator ML~ €CI(F)) is radial.

Set U =ker L FY = ker Lﬁ(M)) By Ly (Mpy) denote restriction of the operator L (M)
to lineal U° (dom My = U° N dom M).

Definition 2. Weakly L-radial operator is an operator M for which condition (i) is satisfied as
well as condition (ii) when n =1 in Definition 1.

Theorem 1. |2| Let the operator M be weakly L-radial. Then:
(1) any vector ¢ € ker L \ {0} does not have M-adjoint vectors;
- L : L — L : L —
(i) ker R,;(M) N im R;(M) = {0}, kerL,/(M)nN im L;(M) = {0}.
(iii) there exists the operator Myt € L(FU°).

By U! (F') denote the closure of the lineal im Rﬁ(M) (im Lﬁ(M)) by norm of the space
u (F).

Lemma 1. [2| Let the operator M be weakly L-radial. Then
; : L _ 1.
(Z)METOO pRy(M)u=u Yuel';
. . L _ 1
(ZZ)NEIEOOML#(M)f—f VfeF

ByU (F) denote the closure of the lineal {9+ im R(LM (M) (FO4 im L(LM (M) by norm

of the space U (F). Obviously, U* (F') is the subspace in U (F).
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Lemma 2. Let the operator M be weakly L-radial. ThenUd =U° & U, F =F'@ F.

2. The resolving operator semigroups
Consider two equivalent forms of the equation (2)
RE(M)i = (oL — M)™*Mu, (7)
LY(M)f = M(aL — M)~ f (8)
as concrete interpretations of the equation
Av = Bu, (9)
defined on a Banach space V, where the operators 4, B € L(V)

Definition 3. The vector-function v € C(Ry;V), differentiable on Ry and satisfying (9) is
called a solution of the equation (9).

A little away from the standard [1], following [7] define

Definition 4. The mapping V- € C(Ry;L(V)) is called a semigroup of the resolving operators
(a resolving semigroup) of the equation (9), if

(i) VViv = VSt for all s,t > 0 and any v from the space V;

(ii) v(t) = V' is a solution of the equation (9) for any v from a dense in V set.

The semigroup is called uniformly bounded, if

¢ >0 V>0 ||Vt||£(v)§0

Theorem 2. Let the operator M be L-radial. Then there exists a uniformly bounded and
strogly continuous resolving semigroup of the equation (7) ((8)), treated on the subspace U (F),
presented in the form:

P (_l)k’—l ﬁ k dk—l L
U=s=tm —oi\i) \gaafi®)

e 5 () (2t

)
E
t

pn=

).

k

H=7%
Proof. Denote the following families of operators:
(_1)k—1 (k:)k ( dk—1 .
U=+~ — R, (M)
P k=10 \ ¢ dpk=1""+ '
Note that
Yuel’  Upu=0. 10
k

Since the operator M is L-radial, approximations of are uniformly bounded by a constant K from
Definition 1:

Ukl cey < K Vt€Ry VkeN. (11)
Let us take u € dom M and find the derivative
) _
n=y

d d [ (=D (E\" [ dF?
Uu=— [ —— [ = —RM(Mm
dt * T dt ((k—l)! t dpk=1 u (M)
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(=D ) ko dF B
T (k—1)! k _ktk+1 dpb—1 u( ) = tk+2d7'uk u(M) u:ﬁu -
B (_l)kfl k k+1 dk 1 . k dkfl . .
= = —— R (M) + tdkl(R( )) Ry (M) M:Eu_
t
- (_1)k—1 k k+1 dk—l L k I -
=i li) g (RE(M) (SR — 1 e
t
-1
= ﬁU;g <kL - M) Mu
t t
Thus,
- Ufu = U} <L - %M> Mu  Vu € dom M. (12)
Now let u € imRﬁ(M), le u= Ré(M)v in some 8 > 0 u v € U. Proof, then
lim Ufu = u. (13)

t—0+

Make the change p = %

k—1 k—1
lim Ulu = lim ( 1> K d

L —
=0+ P oo (k—l)‘” dpk= PRy (M)u =

k—1
o (D™ 1 d™ o (-ymt o dmt o L _
= lim ( u e R; (M) — (m—l)!'u dum—lR“<M) u—l—ull)IJIrloouR (M)u =

k—1 _1\ym—1 m m—1
= lim Zwum (—“dRL(M)— d Rﬁ(M)>u+ im  pRE(M)u =

prtoo £~ —1)! mdum™ dpm—1 p—r+00
— (—ym—t L damt L
= i 3 e (REODIGRE) — Dt i B0 (14
Due to || = 1 " dczr; 11 (Rﬁ(M))HE(M) < K for any p > 0 under L-radiality of the operator
M, we get
k— m 1 dmfl L L
Z S e (REOD)uREOD) = D <
u

< (k= DE[uRY(M)u — w)lly — 0, 1 — +oo.

The second limit in (14) is equal to u.
Now for the same vector u consider the difference

t

d

Ulu — Ufu = / I (U~ Ugn) ds =
0

t
o . -1
/(Ut SUk ZM) M- UU; (L— ZSM> M) uds =
0
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t
_ t—s77S f_t—S _f -1 _t—S - L 2 _
/Ul Uk<k = >(L kM) M(L lM) M (RS (M))>vds =
0

t

t—s\ k l

_/U;—SU,j (Z— ls> “RE(M)-— R\ (M)((BL = M)~ M)?vds.
s - t—s

Taking into account (11), we get

t

s t—s kl K? _
Uk~ Ul < K2 [ |7 = 552 s i (3L = M) M s <
0 s(t—s)
K% (1 1 _
< 55 (5 1) 6L = 8 0 (15)

From (15), (10), (11) and density of im Rﬁ(M) in U" it follows the existence of the limit

U=s— lim U}, U'ecW), |U

Jlim lpen <K V>0,

Inequality (15) shows that U}u uniformly with respect to ¢t € (0,7 converges to Utu. Thus, the
family {ﬁt : t > 0} is strongly continuous with respect to ¢, because due to continuity of right
L-resolvents of the operator it follows a strong continuity of the family {U}, : ¢t > 0} for any k € N.
In order to extend the strong continuity of {U* : ¢ > 0} up to zero, we define an element of the
family of operators UV as a strong limit:

U°=s— lim U
t—0+

Due to (10)

VueU’ U% = lim Ulu= lim lim Uju=0
t—0+ t—0+ k—oo

In addition, using the above-mentioned uniform convergence, it can be shown that

VueclU' U% = lim Ulu= lim lim Ulu= lim lim Ulu = u.
t—0+ t—0+ k—oo k—o0 t—0+

So, we get that U = Pp.
Note that y
. (_1>klfl kl dklfl I
-7 (= —~ _ _RrRL(Mm
Uk (kl—1)! \ ¢ dukl—lRﬂ( )
(_1)kl—2 ki kl dkl—2 I I
=—— | — — (R (M)) R, (M
(kL — 2) (t) (d/ﬂ—Q( w (D) B >>

_ 1)1 kl —1
- ((l i)1)! <k;l> (diu (RL(M)) (Rﬁ(M))(kl)l>

__kl
H="

_ ((t/lky((l—i)’l‘; dcil_—ll [Rg(M)]>’“ l_<Ul;;>’“_ (16)

H==
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l—+o00

i\ k ~ k ~
From (11) it follows, that lim (Ul’“) = (U%> . Indeed, at u e U

A\ K k k-1 £\ k—m—1 m :
t ~ ¢ t .t t ot
) e - ) 09
u m=0 u
t -
< KK* M| UFu - Ukul|
u
Tending in identity (16) [ — 400, we obtain
~ ~ k
0t = (U%) . (17)

Let us show that hence and from the strong continuity it follows that {U t:t >0} is a semigroup.
Taking rational s = k/l u t = m/n using (17) twice, we get

oe0t = OO = (0%)" (0%)" = (%) < gt < g,

For arbitrary real numbers s, > 0 there exist sequences of rational numbers {s, : n € N}, {¢, :
n € N} such that lim s, =s, lim t, =¢. Then,
n—oo n—oo

VneN it = et (18)
Since,
|05 T u = O 0y < N0 gy 1T = Ol + 105 T = 050 uly <

< KHf]t"u—U'tuHu—i— HUS"ﬁtu— USUtuHu, (19)

tending n — oo in (18), (19) and using the strong continuity with respect to ¢ of the operators
family {U? : ¢t > 0}, we obtain the desired.
Further, let u! = (RE(M))Z’U for some 5 > 0 and v € Y. Then

Ut = Ty = Jim (|Uful = Ufut o <

442 K4t2

2

—1
Ulu' = <1R§(M)> ut = <I+ <1L—M) M) ut =

=u' + RY(M)RE(M)(BL — M)™"Mv =

I((BL = M) ™" M)*v]lu,

(1+3) 16z = 30 810l =

T koo 2

due to (15).

=u' +t(L —tM)""(L —tM +tM)R5(M)(BL — M) 'Mv =
= tRE(M)(BL — M)~ Mv + tR’;(M)Rg(M)((ﬁL — M) M)

Therefore ~
Ut—1 4
ul —

- RE(M)(BL — M)~ M

<
u
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Ut -yt
- 1u1

<

— RE(M)(BL — M) 'Mvl|| +

u

u

Ut -1
H =11
t

- K*'t -
< KI((BL ~ M) Mol + - I REO((BL ~ M)~ Mol
Tending ¢ — 0+ we obtain, that

U T L -1
t1—1>%1+ P = R3(M)(BL — M)~ Muv. (20)

Act on (20) by the operator U® and get the differentiability on the right of the semigroup at
this element u! = (RE(M ))2v at point s > 0. In order to show the differentiability on the left at
this point, one can consider the expression

s—t _ 778 75—t t_T
v _tUule (g )ul, s>t>0,

proceed to the limit when ¢ — 0+, using the uniform boundedness of the semigroup. So, by virtue
of (20)
d -~ -
gUt(Ré(M))% =U'R5(M)(BL — M)~ M.
Act on last identity by the operator RE(M).
By construction U! commutes with the operators REZ(M) and (oL — M)~'M for the

corresponding u!, therefore by (20) we obtain

d ~ s
Ré(M)&Utul = (aL — M) *MU"". (21)
Obviously, for u® € U° ﬁs(uo +ul) = Usu!. Then one can change ul by u = u¥ +ul €
U+ im(R{j(M))2 in identity (21). Thus, the function u(#) = U'u is the solution of the equation
(7) for arbitrary u from the dense in I lineal 4%+ im(Rﬁ(M))2.

(For the semigroup Ft=g— klim F}, which is constructed by means of the left L-resolvent,
— 00

the proof is identical).

. |
The semigroup U* (F*) at first is defined not on the whole space U (F), but on some subspace

U (F). Introduce the sufficient condition of their coincidence: U = U (F = F).

Theorem 3. |[2]| Let the space U (F) be reflexive, the operator M be weakly L-radial. Then
U=UoU' (F=FaoF".

Definition 5. Operator M is called strongly L-radial on the right (on the left), if it is L-radial

and

const(u)

IRE(M)(AL — M)~ Muljy < Vu € dom M

[e]
(there exists a dense in F lineal F such, that

const(f)

v Vf eF)

IMAL = M)" L (M) f|| 7 <

for any A, u > 0.

Theorem 4. |[2]| Let the operator M be strongly L-radial on the right (on the left). Then U =
Uol' (F=FaoFh.
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Remark 3. Obviously, that under the condition of strong L-radiality of operator M on the
right (on the left) the resolving semigroup of the equation (7) ((8)) is defined on the whole space

. . L e T L c e .
U (F), and the projector Pugrfoo pRy (M) (Q=s ugrfoo pLy; (M)) is it’s unit.
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YAK 517.9 + 519.216.2

CUJIbHO HETTPEPBIBHBIE MTOJIYTPYIIITHI OITEPATOPOB.
AJBTEPHATUBHBIN TTOIXO0/T

A.A. Bambviuasiesa

Hacsenys u upomosmkas TpaJuUIUIo, BOCXOAAINIYI0 K TeopeMe Xwuiie—llocuibi—
Oennepa—Puanunca—Musanepsl, B JAHHOK paboTe B PAMKaX TEOPUH YPABHEHHU CODOIEBCKO-
r0 THIIA, KOTOpas MEPEKMBALT MOXY CBOETO PACIBETA, PACCMOTPEH HOBBIH COCO6 TOCTPO-
€HUsT ANMPOKCUMAIINI CHJIBHO HEMPEPBIBHBIX MTOJIYTPYIIT OMEPATOPOB C siapaMu. BBoguTcs
MIOHAITHE OTHOCUTENILHO PATUAIILHOTO OIePATOPa, COJEPIKAIlee YCJIOBHE B BUJE OIEHKHU [PO-
WU3BOIHON OTHOCUTEIHHON PE30JIBBEHTHI, MOKA3BIBAETCS CyliecTBOBaHue Co-TIOIYTPYIIIBL HA
HEKOTOPOM TOIIPOCTPAHCTBE HCXOIHOTO MPOCTPAHCTBA, MPUBOMSITCA HOCTATOYHBIE YCIIO-
BUA €r0 COBITQJIEHHUS CO BCEM IPOCTPAHCTBOM. Pe3yiabrarsl OyAyT BeCbMa MOJIE3HBIME TPU
YUCJIEHHOM MCCJIEIOBAHNN MHOTUX HEKJTACCUYECKUX MATEeMATHIECKUX MOJeNell, paccMarpu-
BAaEMbIX B DAMKaxX T€OPWM YpaBHEHHUI COOOJIEBCKOTO THUITA, TEPBOTO MOPSIKA, & TAaK¥Ke s
pacIpoCTpaHeHWs UIeil ¥ MeTOIOB HA ypaBHEHWs CODOJIEBCKOTO THIIA BBHICOKOTO MOPSIIKA.

Karouesvie caosa:  ypasuenue coboaescrozo muna, CuibHo HEnpepulerble NOAYZPYNIbL

0ONepPaMmoOpPos ¢ AIPAMU, ANNPOKCUMAYUUY TLOAYZPYTILOL.
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