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We understand the Leontieff type stochastic differential equations as a special sort of Tto
stochastic differential equations, in which the left-hand side contains a degenerate constant
linear operator and the right-hand side has a non-degenerate constant linear operator. In the
right-hand side there is also a summand with a term depending only on time. Its physical
meaning is the incoming signal into the device described by the operators mentioned above.
In the papers by A.L. Shestakov and G.A. Sviridyuk the dynamical distortion of signals
is described by such equations. Transition to stochastic differential equations arise where
it is necessary to take into account the interference (noise). Note that the investigation of
solutions of such equations requires the use of derivatives of the incoming signal and the
noise of any order. In this paper for differentiation of noise we apply the machinery of the
so-called Nelson’s mean derivatives of stochastic processes. This allows us to avoid using
the machinery of the theory of generalized functions. We present a brief introduction to
the theory of mean derivatives, investigate the transformation of the equations to canonical
form and find formulae for solutions in terms of Nelson’s mean derivatives of Wiener process.
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Introduction

In papers [1, 2] a new approach to investigation on dynamically distorted signals is suggested
that is based on Leontieff type differential equations. Further development of this approach
requires taking interference (noise) into account that yields the transition to Stochastic Differential
Equations. Here the correspondent stochastic differential equation takes the form

LE(t) = M/Otg(s)ds + f(t) + Bw(t),

where L is a degenerate matrix n x n, M and B are non-degenerate matrices n x n, £(t) is
an n-dimensional stochastic process, f(t) is a smooth n-dimensional vector-function and w(t)
is a Wiener process in R™. The physical meaning of these objects is as follows: f(¢) is the
signal incoming into the device described by the matrices L and M, while Bi(t) (where tw(t) is
«derivative> of Wiener process, i.e., white noise) describes the noise (interference).

The equations of such sort are called the Leontieff type stochastic differential equations.

The features of Leontieff type equations require dealing with the derivatives of f(¢) and w(t)
of any order. In paper [3| in the simplest case, where the incoming signal is absent, B is the
unit matrix and the equation has been reduced to canonical form, the so called current velocities
(symmetric mean derivatives) of Wiener process are involved for describing the derivatives of
Wiener process. As a result some physically reasonable analytical formulae for the solutions are
obtained.
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The notion of mean derivatives was introduced by E. Nelson [4, 5, 6] for the needs of the so-
called Nelson’s stochastic mechanics (a version of quantum mechanics). Later a lot of applications
of mean derivatives to some other branches of science were found. The investigation of Leontieff
type stochastic differential equations is a new field of application of mean derivatives. Note that
by general ideology of the theory of Nelson’s mean derivatives the current velocities are natural
analogues of physical velocity of deterministic processes.

In this paper by the use of current velocities we investigate the general situation and do not
suppose the equation to be already reduced to canonical form. Some constructions connected to
reducing the equations to canonical form are announced in [7].

An alternative approach to investigation of Leontieff type stochastic equations, also based on
the use of current velocities, is suggested in [8].

Besides the Introduction the paper contains three Sections. The first one is devoted to basic
preliminary fact from the theory of mean derivatives necessary for the purpose of this article.
In Section 2 we investigate the transition of Leontieff type stochastic differential equations to
canonical form. In Section 3 we find formulae for the solutions of equations under consideration.

Throughout the paper we use Einstein’s summation convention with respect to shared upper
and lower indices.

We refer the reader to [9, 10| for details on the machinery of mean derivatives.

The research is supported in part by RFBR Grants 10-01-00143 and 12-01-00183.

1. Preliminaries on the mean derivatives

Consider a stochastic process £(¢) in R™, t € [0,l], given on a certain probability space
(Q, F,P) and such that £(¢) is Li-random variable for all t.

Every stochastic process {(t) in R"™, ¢ € [0,l], determines three families of o-subalgebras of
o-algebra F:
(i) the <past> Pf generated by pre-images of Borel sets in R™ by all mappings £(s) : Q@ — R”
for 0 < s <t
(i) the <future> ]-"f generated by pre-images of Borel sets in R™ by all mappings £(s) : 2 — R"
fort <s <l
(iii) the <present> (<now>) J\/f generated by pre-images of Borel sets in R™ by the mapping
£(t).
All families are supposed to be complete, i.e., containing all sets of probability 0.

For convenience we denote the conditional expectation of () with respect to ./\/t5 by Ef()

Ordinary (<unconditional>) expectation is denoted by E.

Strictly speaking, almost surely (a.s.) the sample paths of £(¢) are not differentiable for almost
all . Thus its <classical> derivatives exist only in the sense of generalized functions. To avoid
using the generalized functions, following Nelson (see, e.g., |4, 5, 6]) we give

Definition 1. (i) Forward mean derivative DE(t) of £(t) at time t is an Li-random variable of

the form
§(t+ At) —&(t)

De(t) = lim B (> =) (1)

where the limit is supposed to exists in L1(Q2, F,P) and At — +0 means that At tends to 0 and
At > 0.
(11) Backward mean derivative D.£(t) of £(t) at t is an Li-random variable
§(t) — £(t — At)

D.g(t) = lim E( A ) (2)

where the conditions and the notation are the same as in (i).
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Note that mainly DE(t) # D.&(t), but if, say, £(t) a.s. has smooth sample paths, these
derivatives evidently coinside.

From the properties of conditional expectation (see [11] ) it follows that DE(t) and D.£(t)
can be represented as compositions of {(t) and Borel measurable vector fields (regressions)

0 g §(t+ At) —&(t)
Yite) = AP—IB&—OE( At

o §(t) — £(t — At)
Y (tx) = A%I—IE&—OE( At

[£(t) = x)

£(t) = x) (3)

on R™. This means that DE(t) = YO(t,£(¢)) and D.£(t) = YO (,£(2)).

The derivatives introduced in Definition 1, is a particular case of the objects defined as follows.
Let z(t) and y(t) be L;-stochastic processes in R", given on (2, F,P). Introduce y-forward mean
derivative of z(t) by the formula

Draft) = Jim py(PHE0 =0, ()

and y-backward mean derivative of x(t) by the formula

Dia(t) = Jim py(P =222, (5)

where the limits must exist in L1 (2, F, P).
Recall that a process £(t) is called martingale (in our case — with respect its <past> Pf), if
for every time instants 0 < s < t < the relation E(&(¢) | 7355) = ¢(s) takes place.

Lemma 1. Let £(t) be a martingale with respect to its <past> Pf. Then DE(t) = 0.

Proof. By the properties of conditional expectation E*(E(- | Pf)) = E*(-). Then ES(£(t 4+ At) —
(1)) = BS(B(E(t + A1) — £() | P)) = B (€(1) — £(1)) = 0. .
Definition 2. The deriwative Dg = %(D—i—D*) 15 called symmetric mean derivative. The derivative
D = (D — D,) is called anti-symmetric mean derivative .

Consider the vector fields v¢(t,z) = 3(YO(t,z) + Y2(t,2)) and ué(t,z) = L(Y'(t,z) —
Y2(t, ).

Definition 3. v&(t) = v5(t,&(t)) = Dsé(t) is called current velocity of &(t);
ub(t) = us(t,£(t)) = DAE(t) is called osmotic velocity of &(t).

For stochastic processes the current velocity is a direct analogue of ordinary physical velocity
of deterministic processes (see, e.g., [4, 5, 6, 9, 10]). The osmotic velocity measures how fast the
<randomness:> grows up.

By w(t) we denote the Wiener process. Recall that w(t) is a Wiener process (in our case,
with respect to its own <past> P), if

1) its sample paths are a.s. continuous in t;

2) w(t) is a square integrable martingale with respect to P}’ such that w(0) = 0 and
E((w(t) —w(s))?|P¥) =t — s for t > s.

Well-known Levi’s theorem says that in addition w(t) has stationary independent Gaussian
increments and satisfies the equalities:

Bw(t)—w(s) =0,  B((w(t) - w(s))?) =t —s
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for t > s. In the other words, the increment w(t) — w(s) for t > s is independent of PY and has
the same distribution as w(t — s). Note that the probabilistic density p* (¢, x) of w(t) in R™ takes
the form
"(a)= e (©
pL,T)=—= .
(27t)2
Recall that the sample paths of w(t) are a.s. non-differentiable for almost all ¢ and on every
arbitrarily small time inervals they a.s. have infinite variation. Thus, the derivatives of w(t) in
usual sense exists only as a generalized function.

Below we often deal with the processes of the form

£(t) = & + /0 B(s)ds +w(z) (7)

where w(t) is a Wiener process. For such processes the above-mantioned <physical> properties
of current and osmotic velocities become clear from the following propositions.

Denote by p¢(t, ) the density of process (7) with respect to Lebesgue measure A on [0, 1] x R™.
This means that for every continuous inntegrable function f(¢,z) on [0,{] x R™ the following
equality takes place:

/ f(t,z)pS(t, x)d\ = / f(t,&(t))dPdt.
[0,]] xR™

Qx[0,]]

Lemma 2. For porcess (7) in R™ the vector field u(t, ) is represented in the form
1
ut(t,x) = igrad log p*(t, z). (8)

Lemma 3. For process (7) in R™ the vector field v&(t,x) and the density pS(t,x) satisfy the
equation of continuity
dp*(t,z)
ot

The proofs of Lemmas 2 and 3 in the form convenient for us, can be found in [9, 10].
For processes of more general type the above Lemmas can be generalized as follows.

= —div(p*®). 9)

Lemma 4. [12] Let £(t) satisfies the Ito equation &(t) = fg a(s,&(s))ds + fot A(s,x)dw(s). Then

1 3% (a5 (t,x)) 9
13 _ _ OxJ
w(t,z) 2 pi(t,x) ozt (10)

where (o) is the matriz of operator AA*.

Proof. Let f be an arbitrary smooth function on R™ with compact support. Note that f(£(t)) is
NE-measurable. Hence

t t
E(f(E() B ( / | AwEDd®) = B(FE®) [ AED)du().

t—At

Since f(&(t — At)) and ftt—At A(t,&(t))dw(t) are independent and Eftt—At A(t, &(t))dw(t) = 0, we
have

t t

B(F(E) /

t—At

A(t, £(1))dw(t)) = E ((f(f(t)) — fE - At)))(/t

—At

A(t,fu))dw(t») |
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By Ito formula f(&(t)) — f(&(t — At)) = ftt_At(df ~a(s,&(s)))ds + %ftt_mtr 17 (&(s))ds +
fiAt(df - A(s,&(s)))dw(s) (by - we denote the coupling of 1-forms and vectors). Thus

t

£ (steo) / At e@)aw®) = ([ (@ ats. g6 A dsdu(s

—_At —At

t

L / tr (£(5)) (A(s,€(s)), A(s, &(s))dsdu(s) + / (df - Als, €(5)) Als, £(5))ds).

2 Ji—ne t—At

The first two integrals in the right-hand side equal zero. Calculations in coordinates show that
(df - A)A =df - (AA¥).
On the other hand,

T T ¢ A(s,£(8))dw(s
| m(sewmsuewn)a=-3 [ E(f(é(t)) fim p§(Jmar A0 O ”)) =
0 0

2 At—+0 At

T
1/ E(df-AA*)dt:l/ df.AA*.pEdt/\Azl/ Fod(AA® - p)dE A A =
2 Jo R x[0,T] R x[0,T]

ot r L T 0 (g
1/ fpr)psdmAzl/ E(fcwp))dtzl/ E(faﬂmp) A
R™x[0,T] 2 0 0

2 3 13 2 13 ot

d ( ij £

. .. . . . *, o€ - (a" p
Since this is valid for an arbitrary f as above, this means that u¢ = 1d(AA"p%) _ 1 5,5 ) 0
) 2 s 2 s ox

d

An alternative proof of Lemma 4 can be found in [12].
Let A as above be constant and non-degenerate. Then the matrix (a;;) = ()~ is well-posed
and it can be considered as the matrix of new innner product in R™. In this case we obtain

Corollary 1.
1
ub(t, x) = iGrad log p*(t, z) = Gradlog \/ p&(t, x) (11)

where Grad denotes gradient with respect the inner product with matriz (cv;).

Indeed, if A is constant, (a;j) is constant as well, and formula (10) takes the form

LA 0 1) 0 _
2 pi(t,x) oxrt 2 ps(t,z)  Oxt

1
- 3 _
2Grad log p*(t, ) = Gradlog \/p*(t, x).

We are using formulae (8) and (11) below.

Now consider autonomous smooth field of non-degenerate linear operators A(z) : R™ — R,
x € R™ (i.e., (1, 1)-tensor field on R™). Let £(¢) be a diffusion process in which the integrand under
It6 integral is of the form A(&(t)). Then its diffusion coefficient A(x)A*(x) is a smooth field of
symmetric positive definite matrices a(z) = (o (z)) ((2,0)-tensor field on R™). Since all these
matrices are non-degenerate and smooth, there exist the smooth field of converse symmetric and
positive definite matrices (c;;). Hence this field can be used as a new Riemannian a(-, -) = a;;dz'®
dz? on R™. The volume form of this metric has the form A, = \/det(a;;)dzt A da? A -+ A da™.

ug(t, x) =
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Denote by pS(t,x) the probability density of random element £(#) with respect to the volume
form dt A Ao = +/det(a;;)dt A doe! Adz? A --- Adx™ on [0,T] x R™, i.e., for every continuous
bounded function f :[0,7] x R™ — R the relation

T

T
[Ettsoni= [ | [egoue)a= [ oo
0 Q

0 [0,T]xR™
holds.

Lemma 5. For v8(t,z) and p*(t,x) the equation of continuity takes the form

dp*(t, )

5 = —Div(vS(t, ) p*(t, ), (12)

where Div denotes the divergence with respect to Riemannian metric o(-,-).

Proof. Here by Ag we denote the form da' A--- A da™. So, A = det(aij)AR.
Recall that Div(pfv¢) = *fld((pfvg)J A) where | is the interrior product of vector (p*v¢)

and n-form A. But pgvf \/mz pfvﬁ idal A Adet=Y A dei T A - A de™ and
) — (p0S)" 9 det(“w) B(pgv.f)Z
so Div(p-v*) detlay) 0T R

Specify a smooth function f(¢,x) with compact support. By df we denote the differential
with respect to spacial coordinates: df =

/[sw (df - (o*of(r.€()) dr A A =
/[s,t]an (df - (p*0t (T, (7)) det(aij))dr ANAp =

-/ (f(mc)[ det(og) 20 0L (e IO ])WAF
[s,t] x R™

8 )

IV ()i det(oy
_/ (f(T,w) la(p v ) n (p*v%)"  O4/det(a; ] det(aij))dT/\AE —
[s,t] x R™

oz’ det (ozZJ ) Ox

_/ (f(t’ x) la(pgvﬁ)l + p§1)£ 8«/det azj ])dT/\A _
[s,t] x R™

Oz’ det(a;;) O

_/[s,t]xm (f(T,w)Div(pfvindT/\A.

By Ito formula

B(f(t,(6) - f(s.(5)) = B( Stgid7'+/:df-Y0(T,§(7-))dT+;/Sttrf”(A,A)dT)

and by backward Ito formula

B(sw.e) — #65.600) = B[ L+ [ar V0 eimnar— L [T prca ),

s
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Hence,

B(10060) - 166.860) = B( [ Lar s [ ar-o5ctrar).

T

But

B[ Gar+ [ar-simemnar) = [ (SLF el et n -

/[S 0 ((f(T,l‘)pg)dT/\A— (f(T,l’)aap:)dT/\A

{xRrn OT [s,] X R"

- / (f(r, x)Div(pfv£)>dT ANA =
[s,t]x R™

B(recon-seeen) - [ (57025 Yar [ U 2DiR) )ar 24

s,t]X R™

Thus f[s,t}an <f(7', x)%)dT ANA+ f[sﬂan (f(r, l‘)DiU(pg’Uf))dT A A = 0. Since this is valid for

an arbitrary f(¢,x) as above, this means that %—pf = —Div(ptv%).

An alternative proof of can be found in [6].
Since w(t) is a martingale, Dw(t) =0, t € [0,1) (see above).

Lemma 6. [See, e.g., [9, 10]] For t € (0,l] the equality D,w(t) = @ holds.

Proof. From the definition of osmotic velocity u®(¢t,w(t)) it follows that D,w(t) =
—2u"(t,w(t)). Since p™(t, X) is given by formula (6), from formula (8) it follows that u"(¢,z) =

—1-Z Thus, Dyw(t) = @

Corollary 2. Dsw(t) = %

Let us turn to calculation of higher orders mean derivatives of w(t). Taking into account the
system of notation from [9, 10], we look for the k derivative as D", D}’ or DY (see (4) and (5)) of
the (k — 1)-th derivatives. This notation emphasizes that we always use the o-algebra <present>
of w(t).

Lemma 7. [See, e.g., [9, 10]] (i) D“’@ = _wlt) fort € (0,1).

t2
(ii) D™D = 0 for t € (0,1).
(iii) DL = ) for ¢ € (0,1).
Proof. Indeed,
ult) AL ()
DV == = (2 Dw(t) + S Dw(t) 5
e 0 ) , wit
w(t d1l 1 w(t w(t
DY— = (== -D, e A A
$= = (g pw() + S D) 2 2 =0

Assertion (iii) follow from the last two formulae.
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Lemma 8. (z) w(%) kzz(ﬁ,
(ii) DY (%) = —(k — 1)H
(iii) D48y = 21wl

Proof.
(i) DY(“2) = dhw(t) + EDw(t) =~k +0 = —k Y

(i) D2(e) = G gw(®) +

tk t tht t
(iii) From the last two formulae we obtain that (wt—lf)) = %ﬁg
OdJ
Lemma 9. ! For integer k > 2
k—1
mei-n o
k k-1 i=1 w
DSw<t) = (_1) 2 ok C Tk

This formula is proved by induction starting from the assertions of Corollary 2, Lemma 7
(iii) and Lemma 8 (iii).

2. Leontieff type stochastic equations and their canonical form

As it is mentioned in the Introduction, the stochastic differential equation of Leontieff type
is a stochastic differential equation in R” of the form L&(t) = M fo s)ds + fo ))ds + Bw(t),
where £(t) is a random and f(t) is a deterministic n-dimensional vectors, L, M and Barenxn
matrices, where L is degenerate (has zero determinant) while M and B are non-degenerate and
w(t) is a Wiener process. Their physical meaning is the following: f(¢) is an incoming signal into
the device described by operators L and M, Bw where w( ) is white noise, is interference, and
§(t) is outgoing signal. The vector-function f( ) is supposed to be smooth.

If the sheaf M + AL is regular, one can apply the Kronecker-Weierstrass transformation
and reduce the matrices L and M to the quasi-diagonal form (see [13]). This transformation is
described by a pair of linear non-degenerate operators (matrices) that we denote by A = (aé.) and
Ap. The conjugate to A operator is denoted by A*. In the quasi-diagonal form, under appropriate
numeration of basis vectors, in the matrix L = ALAR first along diagonal there are Jordan boxes
with zeros on diagonal, and the last matrix along diagonal is the unit one. In M = AM Ag, in the
lines corresponding to Jordan boxes, there is the unit matrix and the last block along diagonal
is a certain non-degenerate matrix. In the next section, for the sake of convenience, we present
matrices L and M in explicit form.

Denote by (-, -) the standard inner product (Euclidean metric) in R™. Recall that the Wiener
process w(t) is Gaussian with mean value 0 and covariation matrix ¢tI, where I is the unit matrix,
i.e, with density (6) with respect to the volume form of Euclidean metric (-, -).

Introduce the matrix C' = AB. Since the matrices A and B are non-degenerate, C' is non-
degenerate as well and such is also CC* = ABB*A*. Hence the inverse matrix (CC*)™!
C*~10~1 is well-posed. Thus (see [14]), Cw(t) is also Gaussian with mean value 0 and covariation
matrix tC'C* and so, with density

—((cC*) ™z, 2)
2t

POt ) = ((2mt) M PATY2)eap ) (13)

'Note the misprint in this formula in [3] where mistakenly 28! instead of 2* is set in the denominator.
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with respect to the same volume form, where A is determinant of C'C*.
Introduce the new inner product (Eucliden metric) (-,-) in R™ by formula (X,Y) =
(CC) X, Y).

Theorem 1. (i) For every vectors X and Y in R™ the identity (CX,CY) = (X,Y) holds. (ii)
The process w(t) = Cw(t) is a Wiener process in R™ with Euclidean metric (-,-).

Proof. Recall that (CC*)~! = C*~1C~!. Then
(cX,cY) = (c*c7lox,cy) = (c7lox,clcy) = (X,Y).

The volume form of metric (-, -) differs from that of (-,-) by the coefficient A=1/2 i.e., the density
of Cw(t) with respect to the volume form of (-,-) takes the form

((2mt) =) ep(

_ Nl ¢ —(x,x
T2 _ ((amty /)2, (1)

Obviously the other properties of Wiener process are satisfied for Cw(t) in R"™ with metric (-, -).

d

Let eq,..., e, be a natural orthonormal basis in R™ with (-, -).
Corollary 3. Cey,...,Ce, is an orthonormal basis in R™ with (-,-).

Corollary 4. Introduce n(t) = AR'€(t). In R™ with (-,-) the Leontieff type stochastic equation
takes the form Ln(t) = fot Mn(s)ds + fot Af(s)ds+ w(t).

Taking into account formula (11), we see that the expression of current velocity for w(t)
contains Grad(C~'x, C~'x), where Grad is the gradient with respect to inner product (-, -).

Lemma 10. d{(z,r) = d(C~lz,C~tz) = 2C*1C~tx, where d is exterior differential.
Lemma 11. Grad{z,z) = Grad(C~'z,C~'z) = 2z.

The proof follows from the formula of lifting the indices
Grad(C~tz,Ctz) = cC*d(C™tz,C12)

and from Lemma 10.
Hence, in R™ with (-,-) formulae for current velocity and higher symmetric derivatives of
Wiener process w(t) have usual form as in Lemmas 6 — 9.

3. Solutions of Leontieff type stochastic equations

So (see Corollary 4), if the sheaf M + AL is regular, after the Kronecker-Weierstrass trans-
formation the Leontieff type stochastic equation in R™ with (-, -) takes the form

Ln(t):/o ]\477(7')d7'+/0 Af(r)dr + w(t), (15)
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where n(t) = AR €(t),

01 0 00 0 00 0
0 1 00 0 00 0
00 0O0T1TO0O0 0O 00 ... 0
000 0 O0DO0 0O 00 ... 0
000 O0O0TU O 1 00 ... O
L:AEAR: 00 0 0 O00O0 010 ... 0 (16)
0 0 00 ... 00O 0
00 0 00 010 0
00 0 O0O0OTD O 0 1 0
00 00 O00O0 0 00 1
and
1 000 00O O 0 0 0
01 0 0O0O0TO0O O 0 0 0
0 01 00 O0O0O O 0 0 0
0O 001 0O0O0O O 0 0 0
00001 O0O0 O 0 0 0
) 0 00 0O O0OT1O0 O 0 0 0
M=AMAgr = 0 00 0OO0OOT1O0 0 0 0 (17)
0O 0 0O 0 0 O af_t:%l azzg H a%‘il
0O 00 0 O0OO0O0O O an_g anigﬂ a’ ™l
0 00 0O O0OOO OO0 aﬁ_q Uy g1 ay

Everywhere below we deal with equation (15) in R” with (-, -).

It is clear (cf. (7)), that here for simplicity the initial value in (15) is supposed to be £(0) = 0.
Note that the solutions that we construct below, cannot satisfy this condition since they are
ill-posed at ¢ = 0. That is why we approximate the solutions by processes that satisfy zero initial
condition but become solutions only after a certain, a priori given and arbitrarily small positive
time instant o > 0 (see below).

Remark 1. Rewrite (15) in the form Ln(t) — Mf(f n(s)ds — Af(f f(s)ds = w(t). We see that
<present> for the process Ln(t) — ]\Jf(;t n(s)ds — Afg f(s)ds coincides with the <present> for
w(t). Thus we use the latter o-algebra for calculation of mean derivatives< i.e., we apply to (15)
the derivatives D, DY or Dg. Note that the solutions found below, are measurable with respect
to the <present> of w(t) for every t.

Taking into account the structure of matrices (16) and (17), it is clear that (15) is decomposed
into several independent systems of equations. The one «at the bottom> corresponds to the unit
diagonal part of L and the last block of non-degenerate matrix in M. Denote the latter matrix
by K, and by ((t) the vector of dimension ¢ + 1 constructed from the last ¢ + 1 coordinates of
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n(t). Then ((t) is described by the equation

:K/O C(S)d5+/(] Af(r)dr + w(t) (18)

in R4+, Here w(t) is a ¢+1-dimensional Wiener process constructed from the last g+1 coordinates
of w(t) in R™ and Af(t) is a ¢+ 1-dimensional vector constructed from the last g+1 coordinates of
Af(t). For (18) there is a well-known analytical formula of solutions: ((¢) ft KT Af(1)dr +
t K(t—)

Joe dw(T).

The other systems correspond to the Jordan boxes in L and unit matrices, constructed from
the lines and columns in M. As an example, we consider (p 4+ 1) x (p + 1) matrix (Jordan box)
N in the left upper corner of (16)

01 00 0
0 1 0 0
N = . )
0000 ... 1
0O 000 ... 0

and the corresponding unit matrix from (17). The other systems are quite analogous.

Denote by (Af)(p41) the (p+1)-dimensional vector constructed from the first p+1 coordinates
of Af, by ngpi1)(t) — the (p+ 1)-dimensional vector with coordinates (n'(t),...,n""(t))
constructed from the first (p+1) coordinates of n(t) and by w(,41)(t) — the vector with coordinates
(wh(t),...,wPT1(t)) constructed from the first p + 1 coordinates of w(t). It is clear that the
coordinates of Af have the form (Af)’ = 2?21 a;-fj. Then 7,41)(t) is described by the equation

Nijgpin)(£) = /0 (s (8) + (AF) () (8)) 5 + w1 ().

Written via coordinates, this system takes the form

01000 n(t) Jo () + 3251 a} f7)ds wl(t)
00100 n2(t) Jo (P (s)+ 3 71 a3 f7)ds w?(t)

s | = + (19)
00001 7P (t) fo (s +ZJ L f)ds wh(t)
00000 nPrL(t) i+ ot p)ds wPTL(t)

From the last equation of (19) we obtain

n

tpHs s = — t TN ds — wPTL(t).
/0 P (s)d / (> a2t fi)d (1) (20)

Since the current velocity (symmetric mean derivative) corresponds to the physical velocity, from
this equation we find 7PT1(t) by applying the derivative D¥ to both sides of the equality (see
Remark 1). Obviously application of the mean derivatives D" and DY (and so D¥) to the integrals
both in the left and the right-hand sides yields the same results: 7P (t) and Y77, f“
respectively. Thus we obtain that

41 ol g +1 N i1, wPTH(Y)
) == T - DEwrt () = =) aP T
= i=1

(21)
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From the last but one equation we obtain
t n
P = [0+ s+ ) (22)
j=1
Applying the arguments analogous to the above ones, we derive
n
P (t) = DEnH () = )l f7 — DgwP(t).
j=1

Substituting the expression for 7n?*1(t) from (21) into the latter equality and using Lemma 7, we
obtain

_ _Za§+ICZ: B Z o wpzl(t) B w;(ft)‘ (23)
=1

j=1

By complete analogy, for 1 < ¢ < p we obtain the recurrent formula
. . n . . .
' (t) = DEn" () = D alf) — DEw'(t). (24)
j=1

Taking into account Lemma 9 we derive from (24) the explicit expression for every n°(¢), 1 <i < p
in the form:

p n dk i+1 5 n o
Z Z H dtk— H—Ji _Zaz'fj
j=1

k=1
mei-
27 —1
p+1 J k i
k—it+1 J=1 w”(t) w'(t)
+ Z (_1) 2k—i+1 tk—i-i—l - 21 : (25)

k=i+1

Let us turn back to the question on zero initial values for solutions of system (19). From
the definition of symmetric mean derivatives it clearly follows that they are well-posed only on
open time-intervals since their construction involves both forward and backward time increments.
Taking into account formula (25), one can easily see that the solutions constructed above, have
the form of sums where some summands contain multipliers of wz,@
tend to zero as t — 0, i.e., at t = 0 the values do not exist.

A version of solving this problem is as follows. Specify an arbitrary small time instant {9 €

(0,1) and consider the function ¢y(¢) by the formula

, k> 1, type. So, the solutions

[t if 0<t<ty;
to(t)_{t if to <t

In formulae (21), (23) and (24) ’“’j,Et) by (;:)]](t(;))’“ After that the processes will

take zero value at ¢ = 0 but only for ¢t > to they will be the solutions of (15). Note that for two
different time instants t(()l) and t(() ), for t > maa:(t[() ),t(Q))

coincide a.s.

the values of corresponding solutions
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CTOXACTUYECKNE YPABHEHUS JJEOHTHEBCKOTO
TUIA W TPON3BOJIHBIE B CPEIHEM CJIYYAUHBIX
TPOITECCOB

RO.E. I'nuxauzx, E.FO. Mawxos
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Croxacruueckue auddepeHiaibHble YPaBHEHUs] JIEOHTHEBCKOIO THIIA Mbl IHOHMMAEM
KaK CIIEMUATBHBIN KJIACC CTOXACTUYECKUX nudpepeHImanbHbIX ypasuenuit 8 dpopme UTo,
Y KOTODBIX B JIEBOH YaCTH HNMEETCd BBIPOXKIEHHBIM ITOCTOAHHBIM JIMHEHHBINR OIepaTop, a
B IIPaBOI YaCTH — HEBBIPOXKIEHHBIN MMOCTOSHHBIN JUHEHHBIH omeparop. Tak:ke B mpaBoit
JaCTH MMEETCHA CJIaraeMoe, 3aBUCAIIEE TOJIBKO OT BpeMeHn. Ero hu3ndecknit CMBICT — BXO-
JAMu CUCHAJ B yCTPOHCTBO, OMHCHIBAEMOE YKA3aHHBIMHK BBIIIE OMepaTopaMu. B cTarbax
A JI. Mlecrakosa u [.A. Ceupumioka momo0HbIe YPABHEHUST UCTOJB30BAHBI JJIsT OMUCAHUS
MUHAMUYIECKU WCKAYKEHHBIX CUTHAJIOB. llepexon k croxactudeckum audbepeHInanibHbM
YPABHEHWSM BO3HUKAET IPU HEOOXomuMOocTH yuera nmomex. OTMerum, 9To JJisi UCCIeI0Ba-
HHAA PeIeHnii TAKHX YPaBHEHWH HEOOXOINMO MCIOJb30BATH MPOU3BOIHBIE MPOU3BOIHHOTO
MOPSAIKA OT CATHAIA U OT moMeXx. B 31oit ctarbe amst qudpepeHnnpoBanna MOMeX MbI IIPH-
MeHsIeM ammapaT TakK HAa3bIBAEMBIX MPOU3BOIHBIX B cpeareM 1o HelbcoHy OT ciydaifHbIxX
MPOIIECCOB. DTO TO3BOJISIET TIPU UCCJIEIOBAHNN He UCIOIb30BATD AIMAPAT TeOpun 0O0OIIEH-
HbIX dyHKIH. MBI 1aeM KpaTKOe BBEIEHHE B TEOPUIO MPOU3BOIHBIX B CPEIHEM, HCCIEIYyEM
Ipeobpa3oBaHNe YPABHEHNH K KAHOHUYECKOMY BHAY W HAXOAUM (DOPMYJIBI I PEITeHUH B
TepMUHAX MIPOU3BOJIHBIX B CPETHEM BUHEPOBCKOTO IIPOITECCA.

Karuesnie cao6a: npoussodnas 6 cpedHem, Mekyw,as CkOPOCmy, 6UHEPOSCKUY NPoyecc,

YypasHeHUE AEOHIMbBEBCKO20 THUNA.
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