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In the computer algebra system Maple, we have created a package MinimalRealization
to solve the minimal realization problem for a discrete-time linear time-invariant system.
The package enables to construct the minimal realization of a system starting with
either a �nite sequence of Markov parameters of a system, or a transfer function,
or any non-minimal realization. It is designed as a user library and consists of 11
procedures: ApproxEssPoly, ApproxNullSpace, Approxrank, ExactEssPoly, Fractional-
FactorizationG, FractionalFactorizationMP, MarkovParameters, MinimalityTest, Mini-
malRealizationG, MinimalRealizationMP, Realization2MinimalRealization. The realization
algorithm is based on solving of sequential problems: (1) determination of indices
and essential polynimials (procedures ExactEssPoly, ApproxEssPoly), (2) construction
of a right fractional factorization of the transfer function (FractionalFactorizationG,
FractionalFactorizationMP), (3) construction of the minimal realization by
the given fractional factorization (MinimalRealizationG, MinimalRealizationMP,
Realization2MinimalRealization). We can solve the problem both in the case of
exact calculations (in rational arithmetic) and in the presence of rounding errors, or
for input data which are disturbed by noise. In the latter case the problem is ill-posed
because it requires �nding the rank and the null space of a matrix. We use the singular
value decomposition as the most accurate method for calculation of the numerical rank
(Approxrank) and the numerical null space (ApproxNullSpace). Numerical experiments
with the package MinimalRealization demonstrate good agreement between the exact and
approximate solutions of the problem.
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Introduction

In this paper we describe the package MinimalRealization that is destined for solving
of a minimal realization problem. The problem is one of a fundamental problem in linear
system theory. Our package is a Maple implementation of results of the work [1], where a
new algorithm for solving of the minimal realization problem was suggested. The algorithm
is based on notions of indices and essential polynomials for a matrix sequence [2].

The system of computer algebra Maple was chosen for the implementation of the
algorithm because it allows to solve the problem exactly if input data are rational numbers.
This enables us to construct model examples for testing of algorithms for approximate
solving of the problem. All routines of the package are designed in such a way that the
problem is solved exactly if input data are rational numbers, and algorithms of approximate
solving are used if the data are �oating-point numbers.

In the presence of rounding errors or for noisy input data the minimal realization
problem is ill-posed because it uses ranks and null spaces of matrices. We apply the singular
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value decomposition (SVD) as the most accurate method for calculation of the numerical
rank and the numerical null spaces. An application of SVD to the problem was described
in the review [3]. There are other approximate methods for solving of the realization
problem. For example, a series of works of S.G. Pushkov and coauthors devoted to interval
computations in the realization problem (see [4]).

Numerical experiments with the package MinimalRealization showed a good
correspondence between the exact and approximate solutions of the problem.

1. Setting of the Problem

There are the various settings of the minimal realization problem (see, e.g., [3, 5, 6]).
From a formal point of view, they can be reduced to the following three problems.

1.1. Construction of the Minimal Realization by the Impulse Response
(by the Sequence of the Markov Parameters) of a System

Given a sequence of real or complex p × q matrices {Gk}∞k=1 (the impulse responce
or the sequence of the Markov parameters of a system). Find a triplet Σ = (A,B,C) of
matrices such that

CAk−1B = Gk, k = 1, 2, . . . . (1)

We call Σ the system. The sequence {Gk}∞k=1 is said to be realizable if there is a solution
of the problem, the system (A,B,C) is called a realization of the sequence {Gk}∞k=1 and
order n of the matrix A is the order of the realization. The sequence is realizable if and
only if the in�nite Hankel matrixG1 G2 G3 . . .

G2 G3 G4 . . .
...

...
...

. . .

 , (2)

has the �nite rank ρ.
A realization is minimal if its order is minimal. The minimal realization is unique up

to a similarity transformation. The order δ of the minimal realization coincides with the
rank ρ. All existing algorithms of the minimal realization require the a priori knowledge
of an upper bound δ0 for the order of the realization: δ 6 δ0. If such an estimate is known
then for construction of the realization the �nite sequence G1, G2, . . . , G2δ0 of the Markov
parameters is required.

1.2. Construction of the Minimal Realization
by the Transfer Function of a System

Given a p× q matrix function G(z) (the transfer function of a system). Find a triplet
Σ = (A,B,C) of matrices such that

G(z) = C(zI − A)−1B. (3)

The matrix function G(z) is realizable if there is a solution of the problem, the system
(A,B,C) is called a realization of the matrix function G(z), the order n of the matrix A
is the order of the realization. The sequence is realizable if and only if G(z) is a strictly
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proper rational matrix function. A realization of G(z) is minimal if its order is minimal.
The order δ of the minimal realization of G(z) is said to be the McMillan degree of the
matrix function G(z). There is an upper bound for the McMillan degree [5, Sec. 3.2]:

δ 6 δ0 = min

{
q∑

i=1

αi,

p∑
i=1

βi

}
. (4)

Here αi (βi ) is the degree of the lcd for entries of the i-th row (column) of the rational
matrix function G(z).

Let G(z) be the realizable matrix function. Let us expand it as a Laurent series about
z = ∞:

G(z) =
∞∑
k=1

CAk−1B

zk
.

Hence, the Laurent coe�cients of G(z) are the Markov parameters of the system.

The matrix function G(z) =
∞∑
n=1

Gk

zk
is a strictly proper rational matrix function if and

only if the Hankel matrix (2) has a �nite rank. Thus, realization Problem 1.1 and 1.2 are
equivalent.

Informaly, the realization problem is to reconstruct a discrete-time linear time-
invariant system Σ {

xj+1 = Axj +Buj,
yj = Cxj

,

that generates the given impulse response {Gk}∞k=1. Note that the impulse response of the
system can be measured and, in practice, the measured data can be disturbed by noise.

We identify the system Σ with the triple (A,B,C). The system Σm = (Am, Bm, Cm),
that corresponds to the minimal realization, generates the same impulse response as Σ.
However, Σm has important additional properties: it is observable and controllable.

A system (A,B,C) of order n is called observable if the observability matrix

On(C,A) =


C
CA
...

CAn−1

 (5)

has full rank. Similarly, the system is called controllable if the controllability matrix

Cn(B,A) =
(
B AB · · · An−1B

)
(6)

has full rank.
By the Kalman theorem [6, Th. 6.2-3], a realization is minimal if and only if it is

observable and controllable. The condition that On, Cn have full rank is use as a minimality
test.

1.3. Construction of the Minimal Realization
by Reduction of a Non-Minimal Realization

Given a system Σ = (A,B,C) of order n that is non-minimal. Find a minimal
realization Σm = (Am, Bm, Cm) of the system.

Here we have the upper bound δ 6 δ0 = n.
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2. Algorithms and Procedures

In this section we describe algorithms for solving of these problems with the package
MinimalRealization.

The package is designed as a user library and consists of 11 procedures:
ApproxEssPoly, ApproxNullSpace, Approxrank, ExactEssPoly, FractionalFactorizationG,
FractionalFactorizationMP, MarkovParameters, MinimalityTest, MinimalRealizationG,
MinimalRealizationMP, Realization2MinimalRealization.

The main tools for solving of the realization problem are indices and essential
polynomials of a �nite matrix sequence [1, 2]. The procedures ExactEssPoly,
ApproxEssPoly allow to �nd these characteristics of the sequence. ExactEssPoly is used for
computation in rational arithmetic and ApproxEssPoly is applied if input data are �oating-
point numbers. In order to �nd the indices and the essential polynomials we should be
able to calculate the ranks and null spaces of matrices. In the procedure ExactEssPoly we
use the commands Rank and NullSpace of the LinearAlgebra package. In the presence of
rounding errors �nding of ranks or null spaces are ill-posed problems. The most widely
used method for solving of these problems is the singular value decomposition (SVD). We
also use SVD in the procedures Approxrank and ApproxNullSpace. To determinate the
numerical ε-rank of a matrix it is required to choose the tolerance epsilon. This is a
critical point of the problem and many works are devoted to this issue (see, e.g., [7]).

In the procedures Approxrank, ApproxNullSpace the tolerance epsilon is a natural
number and the singular numbers of a matrix are treated as zero if they are less than
10−epsilon.

The indices and essential polynomials allow to construct a right fractional factorization
of the transfer matrix of a system [1, Theorem 2], [8]. We can do this both by the matrix
functionG(z) (the procedure FractionalFactorizationG) and by the sequence of the Markov
parameters (the procedure FractionalFactorizationMP). We note that a construction of
the fraction factorizations has an independent signi�cance because these factorizations
also play an important role in a problem of a generalized inversion of Toeplitz and Hankel
matrices [9] and in a Wiener-Hopf factorization problem [8].

The minimal realization can be constructed if we know the fractional
factorization [1, Theorem 3]. An implementation of the algorithm from this article
carried out in the procedures MinimalRealizationMP, MinimalRealizationG and
Realization2MinimalRealization. They solve Problems 1.1, 1.2, and 1.3, respectively. The
procedure MinimalityTest is applied to test the minimality of the realization. For this we
check that matrices (5) and (6) have the full ranks.

We now describe algorithms that are used in the procedures.

2.1. The Algorithm for Calculation of the Indices and Essential Polynomials.
The Procedures ExactEssPoly, ApproxEssPoly

The parameters, that are passed to ExactEssPoly, are M, N, cMN. Here M < N are
integers, cMN is a sequence cM , cM+1, . . . , cN of complex p× q matrices written in the form

of the block row cMN :=


cM
cM+1

...
cN

 .
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For ApproxEssPoly we must also pass the tolerence epsilon that is used in Approxrank
and ApproxNullSpace for the numerical determination of the ε-rank of a matrix.

We impose a technical restriction on the sequence cMN: ω = 0 (the de�nition of the
defect ω of the sequence see below in the description of Algorithm 1). We use the packages
LinearAlgebra, PolynomialTools, numapprox of Maple.

The procedures return the indices µ1, . . . , µp+q and the matrix Rho :=(
R1(z) . . . Rp+q(z)

)
consisting of right essential polynomials of the sequence cMN.

The algorithm of an exact calculation of µi è Rho is as follows (for details, see [1,2]).

Algorithm 1. Exact calculation of indices and essential polynomials
1: procedure ExactEssPoly( M, N, cMN)
2: Formation of the sequence cM , cM+1, . . . , cN by the matrix cMN;
3: for k from M to N do Tk = ∥ci−j∥ i=k,k+1,...,N

j=0,1,...,k−M
;

4: end do;
5: dM−1 := 0, dN+1 := (N −M + 2)q;
6: for k from M to N do rank:=Rank(Tk), dk := (k−M+1)q−rank, ∆k+1 := dk+1−dk;
7: end do;
8: α := dM , ω := p+ q −∆N+1;
9: if ω ̸= 0 then
10: Info: "error"; STOP;
11: end if ;
12: Determination of the di�erent indices µ̃1, . . . , µ̃s and their multiplicities;
13: Formation of the sequence µ1, . . . , µp+q of the indices taking into account their

multiplicities;

14: if
p+q∑
i=1

µi ̸= (N + 1)p+ (M − 1)q then

15: Info: "error"; STOP;
16: end if ;
17: for m from 1 to s do kernm := NullSpace(Tµ̃m+1);
18: end do;
19: Formation of the matrix Λ(κ1) consisting of the �rst κ1 columns of the matrix Λ from

the criterion of essentialness (see [2], Theorem 4.1);
20: if Rank(Λ(κ1)) ̸= κ1 then

21: Info: "error"; STOP;
22: end if ;
23: Λ := Λ(κ1), Rho :=

(
R1(z) . . . Rκ1(z)

)
, Rj ∈ kern1;

24: for m from 2 to s do
25: for k from 1 to dimkernm do

26: Formation of the column Λk corresponging to vector Uk ∈ kernκm ;
27: if Rank(Λ,Λk) > Rank(Λ) then Λ := (Λ,Λk), Rho := (Rho, Uk(z));
28: end if ;
29: end do;
30: end do;
31: if Rank(Λ) ̸= p+ q then
32: Info: "error"; STOP;
33: end if ;
34: end procedure
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In the procedure ApproxEssPoly we use Approxrank and ApproxNullSpace instead of
the functions Rank and NullSpace.

The following example shows that we have to use ApproxEssPoly in the presence of
rounding errors or for noise input data.

Example 1. Let us consider the matrix sequence from Example 1 of the article [1]:

G1 =

1 0
2 0
0 1

 , G2 =

0 0
0 −2
0 1

 , G3 =

0 −1
0 0
0 1

 ,

G4 =

0 1
0 −4
0 1

 , G5 =

0 −3
0 4
0 1

 , G6 =

0 5
0 −12
0 1

 .

We form the matrix cMN and call the procedure ExactEssPoly (hereinafter for brevity
we will delete some lines from Maple worksheets):

> ExactEssPoly(1, 6, cMN);

Indicies

mu[1]=1, mu[2]=2, mu[3]=6, mu[4]=6, mu[5]=6,

"alpha, omega, mu, Rho, L are now available"

> Rho;

[[1,-1/2 z^2,0,z^6,0],[0,-1/2-1/2 z+z^2,z^6,0,z^5]]

The procedure returns the indices µj and the matrix Rho. Since the condition µ5−µ1 6
1 is not satis�ed, the indices of the sequence are unstable under small perturbations.

Let us generate a random perturbation of the matrix cMN by the Maple function
RandomMatrix:

>RandG:=cMN+RandomMatrix(18,2,density=1,generator=-10^(-6)..10^(-6));

Now we call the procedure ExactEssPoly again. The following result is obtained:

> ExactEssPoly(1, 6, RandG);

Indicies

mu[1]=4, mu[2]=4, mu[3]=4, mu[4]=4, mu[5]=5,

"alpha, omega, mu, Rho, L are now available"

Thus, the use of the exact algorithm does not allow to �nd the correct values of the
indices.

Now we call the procedure ApproxEssPoly with the tolerance epsilon = 5:

> ApproxEssPoly(1, 6, RandG, 5);

"Indicies of the sequence:"

mu[1]=1, mu[2]=2, mu[3]=6, mu[4]=6, mu[5]=6,

"alpha, omega, mu, dmu, Rho are now available"

> Rho;

[[0.99999999999983568,
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-0.186319344532183046+0.389874976941426200 z-0.340856515264002624 z^2,

0.,0.,1. z^6],

[0.,-0.340856623124891012-0.340856551772813099 z+0.681713292957929928 z^2,

1.,1. z,0.]]

We obtain for the perturbed sequence the same indices as for the unperturbed one.
Note that we do not compare the matrices Rho consisting of right essential polynomials
because a basis of the null space of a matrix is not uniquely determined.

2.2. The Algorithm for Construction of the Fractional Factorization.
The Procedures FractionalFactorizationG, FractionalFactorizationMP

The procedure FractionalFactorizationG is applied for construction of a right fractional
factorization

G(z) = NR(z)D
−1
R (z)

of the transfer function G(z) by Theorem 2 of the work [1]. For this we need the indices and
the essential polynomials of the sequence G1, . . . , Gm, m > 2δ, consisting of the Laurent
coe�cients of the rational matrix function G(z).

The Markov parameters Gj are found by the procedure MarkovParameters. We pass
to MarkovParameters two parameters: the matrix function G := G(z) and the number
mM := m of the required parameters. To estimate the McMillan degree δ inequality (4) is
applied. The procedure MarkovParameters returns the block column GMarkov consisting
of the Markov parameters.

In order to �nd the indices and the essential polynomials we use the procedure Exact-
EssPoly if all entries of GMarkov are rational numbers, and we use ApproxEssPoly if there
are �oating-pointed numbers.

To the procedure FractionalFactorizationG we pass two parameters: G := G(z) and
the tolerance epsilon that is used in ApproxEssPoly. The procedure returns the matrix
polynomials DRight := DR(z) and NRight := NR(z).

The algorithm for the procedure is given bellow (see algorithm 2).

Algorithm 2. Construction of the fractional factorization

1: procedure FractionalFactorizationG(G, epsilon)
2: Finding the upper bound δ0 of the McMillan degree, mM := 2 ∗ δ0;
3: GMarkov:=MarkovParameters(G,mM);
4: if all entries of GMarkov are rational numbers then
5: ExactEssPoly(1, mM, GMarkov);
6: else
7: ApproxEssPoly(1, mM, GMarkov, epsilon);
8: end if ;
9: Selection of the submatrix

(
R1(z) . . . Rq(z)

)
from Rho;

10: DRight :=
(
zµ1R1(z

−1) . . . zµqRq(z
−1)
)
;

11: NRight1 :=
mM∑
1

Gjz
−j ∗DRight;

12: NRight := the polynomial part of (NRight1);
13: end procedure
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The procedure FractionalFactorizationMP is used to construct the right fractional
factorization of G(z) by the sequence G1, . . . , Gm, m > 2δ0, of the Markov parameters.
The upper bound δ0 of the McMillan degree δ must be known.

To the procedure FractionalFactorizationMP we pass three parameters: mM := m,
GMarkov, epsilon. The procedure returns the matrices DRight := DR(z), NRight :=
NR(z). The algorithm for the FractionalFactorizationMP is the part of Algorithm 2
beginning with Line 4.

Example 2. Consider the matrix function

G(z) =


1
z

− 1
z(z−1)(z+2)

2
z

− 2(z+1)
z(z−1)(z+2)

0 1
z−1


from Example 1 of the article [1]. In this work we found the fractional factorization by
the sequence of the Markov parameters. Now we construct the factorization directly by
G(z) with the help of the procedure FractionalFactorizationG.

> FractionalFactorizationG(G, 5);

Indicies

mu[1]=1, mu[2]=2, mu[3]=19, mu[4]=19, mu[5]=19,

"alpha, omega, mu, Rho, L are now available"

DRight=[[z,-1/2],[0,-1/2 z^2-1/2 z+1]]

NRight=[[1,0],[2,1],[0,-1-1/2 z]]

We obtained the same result as in [1].

2.3. The Algorithms for Construction of the Minimal Realization.
The Procedures MinimalRealizationMP, MinimalRealizationG
and Realization2MinimalRealization

The minimal realization (Am, Bm, Cm) of a system is found by Theorem 3 of the
work [1]. For this we need the matrix polynomials DR(z), NR(z) from the right fractional
factorization of the transfer function G(z) of the system. Let us denote by Dcol the
invertible matrix consisting of leading coe�cients of the columns ofDR(z). In Theorem 3 [1]
we showed that the matrices Am, Bm, Cm can be constructed by entries of D−1

colDR(z), D
−1
col ,

and NR(z), respectively.
We pass to the procedure MinimalRealizationMP (MinimalRealizationG) the same

parameters as FractionalFactorizationMP (FractionalFactorizationG). To call Realiza-
tion2MinimalRealization we must pass to it the matrices A, B, C of the non-minimal
system Σ and the tolerence epsilon.

All procedures return the matrices Am := Am, Bm := Bm, Cm := Cm that de�ne
the minimal realization of the system. The procedure MinimalityTest is used for checking
minimality of the system. Algorithm 3 is the algorithm for MinimalRealizationMP.

The algorithm for MinimalRealizationG is the same as the previous one. The
only di�erence is that we use the procedure FractionalFactorizationG instead of
FractionalFactorizationMP.
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Algorithm 3. Construction of the minimal realization by the Markov parameters

1: procedure MinimalRealizationMP(mM, GMarkov, epsilon)
2: FractionalFactorizationMP(mM, GMarkov, epsilon);
3: Finding of the matrix DRightCol := Dcol;
4: if ApproxRank(DRightCol) ̸= q then
5: Info: "error"; STOP;
6: end if ;
7: DRightNorm := (DRightCol)−1 ∗DRight;
8: Formation of Am by DRightNorm;
9: Formation of Bm by (DRightCol)−1;
10: Formation of Cm by NRight;
11: Test:=MinimalityTest(Am, Bm, Cm);
12: if Test=0 then
13: Info: "the system (Am, Bm, Cm) is minimal";
14: else

15: Info: "a minimal realization does not construct";
16: end if ;
17: end procedure

The algorithm for a reduction of a non-minimal realization to the minimal one has the
following form (see Algorithm 4).

Algorithm 4. Reduction of a non-minimal realization to the minimal one

1: procedure Realization2MinimalRealization(A, B, C, epsilon)
2: Test:=MinimalityTest(A, B, C);
3: if Test=0 then
4: Info: "the system (A, B, C) is minimal", STOP;
5: else
6: Info: "the system (A, B, C) is not minimal";
7: end if ;
8: n:=RowDimension(A);
9: for j from 1 to 2 ∗ n do Gj := CAj−1B;
10: end do;
11: Formation of the matrix GMarkov;
12: MinimalRealizationMP(2 ∗ n, GMarkov, epsilon);
13: end procedure

3. Numerical Experiments

Example 3. Let us �nd the minimal realization of the transfer function

G :=

(
z/(z + 1)2 1/z2

1/(z + 1) 1/(z + 2)

)
from the article [5] with the help of MinimalRealizationG:
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> MinimalRealizationG(G,4);

Indicies

mu[1]=2, mu[2]=3, mu[3]=11, mu[4]=12,

Am=[[0,1,0,0,0],[-1,-2,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,0,0,-2]]

Bm=[[0,0],[1,0],[0,0],[0,0],[0,2]]

Cm=[[0,1,1,1/2,0],[1,1,0,0,1/2]]

Testing by formula (3) shows that (Am,Bm,Cm) is a realization of G(z), the minimality
test is also ful�lled.

Now we �nd the minimal realization for the perturbed matrix function

G1 :=

(
0.9999999786z/(z + 1.0000000361)2 1.0/(z2

1.0/(z + 1.0000000361) 0.999999941/(z + 1.9999999234)

)
,

with epsilon=4:

> MinimalRealizationG(G1,4);

Indicies

mu[1]=2, mu[2]=3, mu[3]=11, mu[4]=12,

Am=[[0,1,0,0,0],[-1.00000007699999993,-2.00000007700000015,-0.,-0.,-0.],

[0,0,0,1,0],[0,0,0,0,1],[-0.,-0.,-0.,-0.,-1.99999991899999996]]

Bm=[[0,0],[-2.44948983676636000,0.],[0,0],[0,0],[0.,2.23606790799958155]]

Cm=[[-1.90000000000000006 10^(-9),-0.408248266099999980,

0.894427182499999973, 0.447213609399999990,0.],

[-0.408248291300000010,-0.408248274799999978,2.99999999999999998 10^(-9),

-1.90000000000000006 10^(-9),0.447213583000000026]]

We can not compare the matrices Am, Bm, Cm forG èG1 because the minimal realization
is unique up to a similarity transformation only. However, we see that the entries of the
matrices Am for G è G1 have the same �rst 7 digits after decimal point. Moreover, using
formula (3) we checked that we really had obtained an approximate minimal realization
of G1. Hence, the algorithm is robust.

Example 4. To verify the procedure MinimalRealizationMP we consider the example from
the work [10, pp. 433, 434]. Let us take the �rst 6 Markov parameters and put x1 = 17/3,
x2 = 1/37. Since the input data are cumbersome, we do not cite them.

For the initial sequence the procedure returns the following values of indices

mu[1]=2, mu[2]=3, mu[3]=4, mu[4]=5,

Now we perturb the input data by RandomMatrix with the entries in the range
[−10−7, 10−7]. For epsilon = 6 we get the following approximate minimal realization

mu[1]=2, mu[2]=3, mu[3]=4, mu[4]=5,

Am=[[0,1,0,0,0],[-2.00000856399999982,3.00000255500000002,

-4.95945338499999976,0.749432599000000032,-0.929948897000000052],

[0,0,0,1,0],[0,0,0,0,1],

[-0.0000157399999999999984,0.00000549999999999999986,-6.97297860000000026,

-3.33332246000000021,2.99999742000000014]]
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Bm=[[0,0],[-15.3882633401427551,-20.6797652569520914],[0,0],[0,0],

[-41.9701472234983654,-41.9701418934536434]]

Cm=[[0.188982356099999998,-3.43999999999999970 10^(-8),

0.143975022300000005,-0.0931164741999999934,-0.0238264474300000016],

[-3.09695591100000002 10^(-8),-1.38333411999999998 10^(-9),

-0.0238265404300000012,1.84852747800000018 10^(-8),

-1.56090803199999994 10^(-9)]]

In order to verify the result we calculated the Markov parameters Gk for the initial
sequence and the perturbed one. It turns out that the entries of the �rst 6 Markov
parameters coincide up to the �rst 5 digits after decimal point.

Example 5. Here we test the procedure Realization2MinimalRealization. Let us consider
the system (A,B,C), where

A := Matrix([[2/3, 0, -1, 3/7], [-2, 1, 1/2, 0], [0, 0, -2, 1/2],

[0, 0, 0, 0]]);

B := Matrix([[1/3, 0, -1], [-1, 1/2, 0], [-1/2, 0, 1], [0, 0, 0]]);

C := Matrix([[1, -3, -1, 1], [-1/2, 1, 1/2, -1/2]]);

We obtain the following result

> Realization2MinimalRealization(A, B, C, 5);

"The system (A,B,C) isn't minimal"

Am=[[9,0,-25/6],[49,1,-49/2],[22,0,-31/3]]

Bm=[[25/6,0,-9],[49/2,-1,-49],[31/3,0,-22]]

Cm=[[-11,3/2,5/4],[27/8,-1/2,-5/16]]

"The system (Am,Bm,Cm) is minimal"

Now we �nd the minimal realization if the initial data disturbed by noise.

A1 := A+RandomMatrix(4, 4, density = 1, generator = -10^(-6) .. 10^(-6));

B1 := B+RandomMatrix(4, 3, density = 1, generator = -10^(-6) .. 10^(-6));

C1 := C+RandomMatrix(2, 4, density = 1, generator = -10^(-6) .. 10^(-6));

Realization2MinimalRealization(A1, B1, C1, 5);

Am=[[0.807667894000000052,-0.330770221899999994,0.0205231110000000002],

[0.0257488389999999992,-1.16876715800000008,-0.975788304000000050],

[0.230421724999999994,-1.75904463600000006,0.0277649500000000000]]

Bm=[[5.62275499172367521,-0.876606563327936184,-9.13991031580920499],

[10.8115998415014688,0.446659061140488090,-20.8163076602667552],

[24.0189824469517284,-1.01594201125095229,-49.4999576454217234]]

Cm=[[2.31639664900000009,0.156871677099999996,-0.453276107799999995],

[-0.755875162299999958,-0.0473018757999999970,0.139258362200000014]]

For checking we calculated the �rst 10 Markov parameters for (A,B,C) and (A1, B1, C1).
The entries of these matrices coincide up to the �rst 4 digits after decimal point.
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ÐÅØÅÍÈÅ ÇÀÄÀ×È ÌÈÍÈÌÀËÜÍÎÉ ÐÅÀËÈÇÀÖÈÈ
Â ÑÈÑÒÅÌÅ MAPLE

Â.Ì. Àäóêîâ, À.Ñ. Ôàäååâà

Â ñèñòåìå êîìïüþòåðíîé ìàòåìàòèêè Maple ñîçäàí ïàêåò MinimalRealization äëÿ

ðåøåíèÿ çàäà÷è ìèíèìàëüíîé ðåàëèçàöèè ëèíåéíîé êîíå÷íîìåðíîé ñòàöèîíàðíîé äè-

íàìè÷åñêîé ñèñòåìû ñ äèñêðåòíûì âðåìåíåì. Ïàêåò ïîçâîëÿåò ïîñòðîèòü ìèíèìàëü-

íóþ ðåàëèçàöèþ ñèñòåìû ïî êîíå÷íîé ïîñëåäîâàòåëüíîñòè ìàðêîâñêèõ ïàðàìåòðîâ
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ñèñòåìû, ëèáî ïî ïåðåäàòî÷íîé ìàòðèöå-ôóíêöèè ñèñòåìû, ëèáî ïî ïðîèçâîëüíîé
íå ìèíèìàëüíîé ðåàëèçàöèè. Îí îôîðìëåí â âèäå ïîëüçîâàòåëüñêîé áèáëèîòåêè è
ñîñòîèò èç 11 ïðîöåäóð: ApproxEssPoly, ApproxNullSpace, Approxrank, ExactEssPoly,
FractionalFactorizationG, FractionalFactorizationMP, MarkovParameters, MinimalityTest,
MinimalRealizationG, MinimalRealizationMP, Realization2MinimalRealization. Àëãîðèòì
ðåàëèçàöèè îñíîâàí íà ïîñëåäîâàòåëüíîì ðåøåíèè òðåõ çàäà÷: 1) íàõîæäåíèå èíäåê-
ñîâ è ñóùåñòâåííûõ ìíîãî÷ëåíîâ ïîñëåäîâàòåëüíîñòè ìàðêîâñêèõ ïàðàìåòðîâ (ïðî-
öåäóðû ExactEssPoly, ApproxEssPoly), 2) ïîñòðîåíèå ïðàâîé äðîáíîé ôàêòîðèçàöèè
ïåðåäàòî÷íîé ìàòðèöû-ôóíêöèè (FractionalFactorizationG, FractionalFactorizationMP),
3) ïîñòðîåíèå ìèíèìàëüíîé ðåàëèçàöèè ïî çàäàííîé äðîáíîé ôàêòîðèçàöèè
(MinimalRealizationG, MinimalRealizationMP, Realization2MinimalRealization). Ïðåäó-
ñìîòðåíà âîçìîæíîñòü ðåøåíèÿ çàäà÷è êàê â óñëîâèÿõ òî÷íûõ âû÷èñëåíèé (â ðà-
öèîíàëüíîé àðèôìåòèêå), òàê è ïðè íàëè÷èè îøèáîê îêðóãëåíèÿ èëè äëÿ íà÷àëü-
íûõ äàííûõ, âîçìóùåííûõ øóìîì. Â ïîñëåäíåì ñëó÷àå çàäà÷à ÿâëÿåòñÿ íåóñòîé÷è-
âîé, ïîñêîëüêó òðåáóåò íàõîæäåíèÿ ðàíãà è ÿäðà ìàòðèöû. Èñïîëüçóåòñÿ ñèíãóëÿð-
íîå ðàçëîæåíèå ìàòðèö êàê íàèáîëåå íàäåæíûé ìåòîä íàõîæäåíèÿ ÷èñëåííîãî ðàí-
ãà (Approxrank) è ÿäðà (ApproxNullSpace). Âû÷èñëèòåëüíûå ýêñïåðèìåíòû ñ ïàêåòîì
MinimalRealization ïîêàçàëè õîðîøåå ñîîòâåòñòâèå ìåæäó òî÷íûìè è ïðèáëèæåííûìè
ðåøåíèÿìè çàäà÷è.

Êëþ÷åâûå ñëîâà: äèñêðåòíàÿ ëèíåéíàÿ êîíå÷íîìåðíàÿ ñòàöèîíàðíàÿ äèíàìè÷å-

ñêàÿ ñèñòåìà; äðîáíàÿ ôàêòîðèçàöèÿ; ìèíèìàëüíàÿ ðåàëèçàöèÿ; àëãîðèòìû ðåøåíèÿ

çàäà÷è ðåàëèçàöèè.
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