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ON THE MEAN-VALUE PROPERTY FOR POLYHARMONIC
FUNCTIONS

V.V. Karachik

The mean-value property for normal derivatives of polyharmonic function on the unit
sphere is obtained. The value of integral over the unit sphere of normal derivative of mth
order of polyharmonic function is expressed through the values of the Laplacian’s powers
of this function at the origin. In particular, it is established that the integral over the unit
sphere of normal derivative of degree not less then 2k — 1 of k-harmonic function is equal to
zero. The values of polyharmonic function and its Laplacian’s powers at the center of the
unit ball are found. These values are expressed through the integral over the unit sphere
of a linear combination of the normal derivatives up to k — 1 degree for the k-harmonic
function. Some illustrative examples are given.

Keywords: polyharmonic functions, mean-value property, mormal derivatives on a

sphere.

Introduction

In investigation of mathematical models described by the polyharmonic equation properties
of polyharmonic functions are very useful to know. Let u(z) be a harmonic function in the domain
Q CR"and B(x) ={y € R": |y — x| < r}. It is well known (see [1]) the Gauss mean-value
property for harmonic functions: if € Q and B, (x) C €, then for all functions harmonic in 2

1
u(z) = 9B, ()] o) u(y) dsy. (1)

This mean-value property has been extended by Pizzetti (see [2]) for k-harmonic functions
in Q to the form

_t u(y) ds, =T(n/2) kil _r¥Atu(zo)
0B, ()| JoB, () Y = 40 (i + n/2)’

where I'(«) is the Euler’s gamma function. This property can be easily written for a k-harmonic
function u € C*~1(S) in the unit ball S C R™ in the form

1 Atu(0)

— w(x) dsy = —_—
o Jos ") @,2)i(m.2);

(2)

I
)

i

where w,, is the surface area of the unit sphere 95, and (a,b)r = a(a +b)---(a + b(k — 1)) is
the generalized Pochhammer symbol with (a,b)o = 1. For example, (2,2); = (2i¢)!!. The similar
formula was proved in [3, Theorem 7| for calculating the integral of homogeneous polynomial
Qm(z) on the unit sphere

0, mée2N—1
Qm(x)dsy = A™2Q, ()
mln---(n+m—2)

|z|=1 Wy, m € 2N
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Consider the operator A defined by the equality

- 0
=1

This operator plays an important role in our investigation because in the paper [4] it was
proved that the following equality is fulfilled on 95

where v is the outer normal to 5, and t¥l = ¢(t —1)...(t — k + 1) is a factorial power of t.
Besides, it is known (see, for example, [5]) that if u is a harmonic function, then function P(A)u
is also a harmonic one, where P(\) is a polynomial.

1. The mean-value property for normal derivatives

We are going to extend formula (2) to the normal derivatives of the function w(z). Let us

denote No = NU {0}.

Theorem 1. For all m € Ny and for any polyharmonic function in the unit ball u € C™(S) the
following equality holds

N A 2K,
dsy =) @), (M)kA u(0), (5)

where v is the unit outer normal to 0S.

Proof. In [6, Theorem 4] it is proved that for any polyharmonic in S function u(z) the following
Almansi representation takes place

|2k o)kl
+Z L | | /0 1(k—)1)! o2 Yy (az) da, (6)

where harmonic in S functions vo(z), ..., vg(x),... are given by the formula
o0 s 1 s—1 5—1
\iU|2 (L= )" o™ o1 Akts
v () )+ SE 1 45 ; Go1) a A"y (ax) da. (7)

The upper limit of sum above is equal to infinity but since the function u(x) is a polyharmonic
in S then summation is finite and exists kg such that vi(z) = 0 for all k& > k. It is not hard to
see that

A(|£B|2ku) = |22 (2k + A)u

and therefore
AP (o) = (A = 1) (| (2k + A)u) = [2[*(2k — 1+ A)(2k + A)u,
whence
AP (|2 0) = |2 2k —m 4+ 14+ A) -+ (26 — 14+ A)(2k + A)u = (25)™u + Qp(A)u,

where Q,(\) is a certain polynomial such that @,,(0) = 0. Therefore in S we have
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o0

Qk[m:r% 1—a)k ! n/9—
Ay (z) = )+ Z 4]%" | /0 ((k—)l)' o2 Ly () dot
k=1 '

2k 1 —« k
+ Z ARR] / - )1). o Qm (M) dov

Using the mean-value property for harmonic functions and harmonicity of Avg we can obtain
the equality [yq Qm(A)vg(ax)ds, = 0. Therefore using (7) we have

1 <0 (2k)m 1 1 /o
o AMoy(z) ds, = Z()l)'/ (1 —a)*1a™27 1 da v, (0) =

s Ak Ee (k —
2 (2k) Mo (0) D(R)T(n/2) <= (2K [mlvk 0) X (2k) [mlM (0)
; 4kk:|(k —1)! F(k; +n/2) kzzl .2k z;) (n,2)

4), we obtain the theorem’s statement for m > 0. If m = 0, then by
5) is true in this case also.

Hence, by virtue of
equality (2) the formula

o~

]
Example 1. Let function u(z) be a harmonic in S and u € C*°(S), then from Theorem 1 follows

that o
g ds, =0, m>1.
oS Oum

For a biharmonic in S function u € C*°(S) from Theorem 1 follows that

m 9[m]
M dsy = wp,—Au(0) =0, m >3
o8 8I/m 2n

since 2™ = 0 at m > 3 (see example 3). In general case, if the function u(z) is a k-harmonic in
S and u € C*°(S), them from Theorem 1 it follows that

k-1 . ;
o"Mu (20) ™ A (0)
sy = wn Y e =0, m > 2k — 1
o8 ovm i—0 (2, 2)Z(7’L, 2)2

because of equality (2k — 2)[™ = 0 provided that m > 2k — 1.

2. The value of polyharmonic function at the unit ball center

The following statement is true.

Theorem 2. For any polyharmonic in the unit ball S C R™ function u € C*~1(S) the equality

1 0 L Ou jq OF 1
u(O)—wn/as(h wk RS S ds, (8)
holds, where hi are found from the equality
. (DL A
=7 -1
i sl(k —1)! t(\/i ) —t ©)

satisfy to the recurrence relation

1 = (1 - %) s ﬂhs ! (10)
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and are coefficients of the polynomial

(~1)4!
1) = (gp gy = 2) - (A= 2b+2) (11)

expanded in the terms of factorial powers A\
Hy_y(N) = hE= B ph=23 k=2 g Rl A 4 B, (12)

The original proof of this Theorem is omitted because it requires some additional
investigations and moreover this Theorem is a special case of more general Theorem 4.

It is necessary to note that recurrence relation similar to (10) aj ; = (k—2s+1)aj+3a;~" was
used in |7], where special polynomials were constructed. Regularization of integral equations was
considered in [8, 9]. Recurrence relation of the form (10) determines some arithmetical triangle
similar to Pascal, Euler and Stirling triangles, but its elements are rational fractions. Calculating

hi by the formula (10) the triangle H can be written in the form

1
1
=3
; 21
8 8
. o3 1 (13)
16 16 48

98 20 7 1
128 128 192 384

iy = (1—s/(2k)h; —1/(2k)h;
Remark 1. Formula (8) according to (12) and (4) can be represented in the form

1
u(0) = — Hi_1(A)u(z) dsy.
Wn Jos
Example 2. For a 4-harmonic function u € C3(S), according to 4th row of the triangle H from
(13), the following equality holds

O = o s

L (U_H%+3%_183U>d8
169y  160v2 4809v3) %

Consider polynomial

H™MA) =AA=2)---(A=2m+2)(A—2m —2) - (A — 2k + 2). (14)

It is obvious, that Hy_1(\) = H,go_)l()\)/ngo_)l(O) and H,giq@m) # 0.
Lemma 1. Let
u(@) = uo(x) + -+ + [ Puy_1 (2)
be the Almansi representation of a k-harmonic in S function u(z) and such that u € C*¥=1(S),
then for m € Ny and m < k the equality

U = ; (m) u\xr S
0= — [ B @tz ds, (15)

holds true.
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Proof. Let A € R, i € Ny, i < k and v(x) be a harmonic in S function. It is not hard to see that
in S the equality

(h = )l (@) = |2 (2 = No(@) + Av(a))

holds true and therefore
H () (lePo(@) = o (B} 200(@) + Qe (Av() )

where Q_1(\) is a certain polynomial of degree (k — 1) depending on H,E:Ti and such that
Qr-1(0) = 0. Function Qi—1(A)v is also a harmonic in S function. Let S, be a sphere of the
radius r with a center at the origin of coordinates. For all r € (0,1) we have Q_1(A)v € C(S,).
Then

Qr—1(MNv(z)ds, = Qk_l(O)/ v(z)ds, = 0.

Sy oSy

Therefore, if i # m, then H,gr_ni(Qz) = 0 and then
/ H{™ () (Jaf2o(x) ) ds, = H{™)(23) / v@)ds, + [ Quo1(A)o(z)ds, = 0.
oSy 9Sr 0Sr

If 4+ = m then similarly to the above

| m " m 1 m
u}r/ H,g_{(A)(|x|2 v(x)) dsw:H,g_yzm)T/ v(z) dsy = H™) (2m)v(0),
n J S, Wn Jos,

where w), is the surface area of the sphere 05,. Therefore for the function u(z) the equality

k—1

1 m 1 m ; m

= [T W@ s =3 /6 W) (je (@) dse = B Emyu(0). (10)
i=0 " r

s
wn

r

holds. Since u € C*~1(S), then dividing this equality on H ,ﬁ’j‘}(2m) # 0 and taking the limit as
r — 1 we obtain the lemma’s statement (15).

Theorem 3. For any k-harmonic in the unit ball S function u € C*(S) the equality

HP (A)u(z) ds, = 0,
oS

holds, where HF'(\) = A(A = 2) -+ (A — 2k + 2).

Proof. 1t is not hard to see that Vi < m, H ng)(%) = 0. Therefore using the equality (16) from
Lemma 1 at r € (0,1) we have

-1
1 (k) 1/ (k) 2

— H;" (MNu(z)ds, = — H;" (M) (x| u;(x) ) dsg = 0.
i Ly ey s =37 o [0 (o)

Taking the limit for » — 1 we obtain the desired equality.
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Some generalization of the well known property of the harmonic functions |, 88 % dsy =0 on
the polyharmonic functions is the following assertion.

Sequence 1. If the numbers a; are found from the equality
ngk)()\) — )\[k] + ak—l)\[k_l} 4t al)\[l] + ag,

then for any polyharmonic in the unit ball S function u € C*(S) the equality

ou 9
/85 (aou+a15+-“+aka k>d893—0
holds.

To prove this corollary it is sufficient to remember (4) and to take advantage of Theorem 3.
Theorem 2 can be generalized in the following way.

Theorem 4. For any polyharmonic in the unit ball S function u € C*~1(S) the equality

M, (0) = 1 (2,2)m(n, 2)m (M) AVl ds
ATu(0) = — 1) (2 8sHk—1(A) (z) dsa, (17)

holds, where the polynomial H,ET%()\) is defined in (14) and m =0,...,k — 1.
Proof. Let

u(z) = uo(x) + - + [ Pup_1 (2) (18)

be the Almansi representation of a k-harmonic in S function u(x) and such that u € C*¥~1(S5),
then for m € Ny and m < k the equality (15) holds. Besides, if v is a harmonic in S function,
then (see [4])

A(|:L‘|2mv(:13)) = |z[*™722m(2m + n — 2 + 2\ )v(x).

Therefore for ¢ < m we have

N(|x\2mv(a;)) =P T 252 +n -2+ 20)u(2)

j=m—it1
and hence Ai<\xl2mv(x)>| - 0. If ¢ = m, then we have
r=
m
M(\xﬁm ) sz 2j +n —2+20)0(z) = [] 27(2) +n — 2)v(2) + Pi(A)o(x) =
7=1 7=1

=2mlln--- (n+2m — 2)v(z) + Py(A)v(z) = (2,2)m (1, 2)mv(z) + Py(A)v(z), (19)

where Py ()) is a certain polynomial of kth power and such that Py (0) = 0. Therefore we obtain

Am(mmu(g;)) = (2,2) (1, 2)mu(0).

|z=0

From (18) it follows that for ¢ > m

N(|:z;|2mv(x)> = (2,2)m(n, 2)m AT 0(z) + AT P (A)u(z) = 0.
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Therefore applying the operator A™ for m € Ny and m < k to the equality (18), then
assuming = = 0 and using (15) we obtain

k—1
A" u(x))p— ——g A™ ()% u;(x = H; ' (Mu(z) dsg.
( )\ 0 v <| ’ ( )>|m:0 W ;EE%(Q ) pye k 1( ) ( )

Formula (17) is proved.

- (]
Remark 2. It is not hard to see that if the function u € C*¥(S) is a (k 4 1)-harmonic in the unit
ball, then for numbers a; from Sequence 1, according to Theorem 4, the following equality holds

ou oFu
k —
AFu(0) = /BS (aou—l—m% + - +akW> dsg.
Example 3. Let the function u(z) be a 3-harmonic one in S and u € C?%(S). It is easy to see
that
HP(N) = AA—2) = Al 452,

H§2) (4) =38, (2,2)2 =8, (n,2)2 = n(n + 2) and therefore the following equality holds

o M2 [ (00 P
Au(0) = 85( 8u+81/2)d8x'

Wn

If the function u(zx) is a biharmonic one in S, then according to Sequence 1 we obtain

ou  0%u ou d%u
— — 4+ ——= | dsy = —ds, = ——dsg.
/65( ov + 8y2) s==0= a5 OV § a5 OV? °
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YK 517.575

O CBOIICTBE CPEAHETI'O /14 ITIOJINTAPMOHUNUYECKIIX
®dVHKIIUI B IIIAPE

B.B. Kapavuux

ITorygeno cBO#icTBO cpe/iHETO It HOPMAJIBHBIX TPOU3BO/IHBIX OT TOTUTaPMOHUIECKOH
dyHKIINN 0 enMHUYHON cdepe. 3HaUYeHNE WHTETPaja OT HOPMAJBHBIX MPOH3BOIHBIX 10
€JIMHUYHON cdepe OT MOJUTapMOHUYECKON (DYHKITHH BHIPAYKAETCH UEPE3 3HAYEHUS CTere-
Heil JamIacuaHoB OT 9TOH YHKIHHE B HaYa e KOOPANHAT. B 9acTHOCTH, YCTAHOBJIEHO, YTO
WHTErpaJl [0 eIUHUYHON chepe OT HOPMAJIBHBIX MPOU3BOAHBIX A-TapMOHUYECKON dyHKIMN
nopsiika He menbie 2k — 1 paBen mymaro. Haiinensr 3HaueHns OJIUTapMOHIYECKOH hyHK-
MY U JIAMJIACUAHOB OT Hee B IEHTPE eIUHNYIHOrO IMapa. JTO 3HAYEHIE BBIPAIKAETCS JEPE3
WHTErpaJj 10 eANHUIHON cdepe OT JMHEHHON KOMOMHAIINN HOPMAJIBHBIX TPOU3BOIHBIX JI0
k — 1 mopsinka qyia k-rapmorndeckoit dyukimn. [IpuBenensr WTIOCTPATUBHBIE TTPUMEDPHI.

Karouesnvie caosa: noauzapmonuseckue GyHKUUL, c80UCME0 CPEOHE20, HOPMGNLHDLE

npoussodnuie Ha chepe.
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