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We investigate differential-algebraic equations arising in mathematical models that
describe some radio-technical devises. A class of differential-algebraic equations is described,
for which necessary and sufficient conditions for global in time existence of solutions are
proved. As well as in many papers where sufficient conditions for such equations are
obtained, we reduce them to ordinary differential equations and then apply the necessary
and sufficient conditions for the latter. We deal with the systems whose matrix pencil is
regular and (for simplicity) the characteristic polynomial satisfies the rank-degree condition.
We also require some additional conditions that allow us to reduce the differential-algebraic
system to ordinary differential one.
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Introduction

In this paper we deal with the differential-algebraic equations of the form
Li(t) = Ma(t) + f(t,z(t)) (1)

in R" where L and M are nxn constant matrices (i is degenerate and M is non-degenerate)
and f(t,x) is a vector field on R".

Such equations arise in mathematical models describing some radio-technical devises
(see [1-3]). In [3-5] (see also the bibliography therein) some sufficient conditions for global
in time existence of solutions of differential-algebraic systems are obtained. In many cases
the idea of the proof is to reduce a differential-algebraic equation to an ordinary differential
equation by some artificial machinery and then to apply criteria for existence of global in
time solutions for the latter, reformulated in terms of the system under consideration.

The main aim of this paper is to obtain necessary and sufficient conditions for existence
of global in time solutions for some type of differential-algebraic equations . We use
similar idea of reducing them to ordinary differential equations but after that we apply
the necessary and sufficient results obtained in [6-8].

For the sake of simplicity of presentation of our methods, unlike [3-5], we do not use
spectral projectors, etc., but first we transform the differential-algebraic equation to its
canonical form and then formulate the existence theorems in the terms of the latter. Also
for the sake of simplicity, we deal only with the systems with regular matrix pencil whose
characteristic polynomial satisfies the rank-degree condition (Chistyakov’s condition). We
prove the necessary and sufficient conditions for a subclass of the above-mentioned systems
satisfying some conditions similar to those in [5].

The case where the rank-degree condition is not assumed, can be investigated as well,
but it requires additional difficulties in its presentation and we suppose to consider it in
forthcoming publications.
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1. Preliminaries

Consider the ordinary differential equation
i(t) = X (¢, z(1)) (2)

with smooth right-hand side on a smooth finite-dimensional manifold M. Introduce the
enlarged phase space M™ = R x M and the vector field X on it that at the point
(t,x) € M* is given by the formula X , = (1, X(,2)).

A smooth function f : M+ — R is called proper if its preimage of every compact set
in R is compact in M*. Note that in a Euclidean space, a function [ is proper if and only
if f(x) = o0 as z — 0.

The derivative of a function f in the direction of the vector field X is denoted by
X*f.

Recall that a Riemannian metric is given on a manifold NV if in every tangent space
TN an inner product (-,-),, is given such that the family of inner products is smooth
in m. The norm of a vector Y € T,,,N is defined by usual formula ||Y| = /(Y,Y ).
The Riemannian metric determines the Riemannian distance p(mg, m;) as the infinum of
length of curves connecting mg and m; in N. With respect to this distance, the Riemannian
manifold turns to a metric space. The Riemannian metric is called complete, if the above-
mentioned metric space is complete.

In two theorems below the role of manifold N is played by M* introduced above.

Theorem 1. [6-8| All solutions of (2) exist on the entire real line t € (—oo,+00) if and

only if on M™ there exists a complete Riemannian metric such that the norm || XT|| of
vector field X is uniformly bounded on M™.

Theorem 2. [7,8] All solutions of (2) exist on the entire real line t € (—o0, +00) if and
only if there exists a smooth proper function ¢ : M+t — R such that the absolute value
| Xt of the derivative of ¢ in the direction of X is uniformly bounded on M™.

We need also some facts from the theory of matrices. Detailed explanation of this
material can be found, e.g., in [9,10].

Definition 1. Let two n X n constant matrices A and B be given. The expression NA+ B
where X is a real or complex valued parameter, is called the matriz pencil. The polynomial
det(AA + B) (with respect to \) is called the characteristic polynomial of the pencil. If
det(MNA + B) is not identical zero, the pencil is called reqular.

Theorem 3. Let the matriz pencil NA + B be reqular. Then there exist non-degenerate
matrices P and () such that

P(AA+B)Q:A(%1 ]OV)+(‘5 Ef_d), 3)

where Ey and E,_4 are unit matrices of the corresponding dimensions, N 1s an upper

triangle matriz consisting of Jordan boxes with zeros on diagonal and J is a certain d X d
block.
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Definition 2. If the characteristic polynomial satisfies the equality
rank(A) = deg(det(\A + B)), (4)

we say that the polynomial satisfies the condition rank-degree (Chistyakov’s condition).

Theorem 4. If the characteristic polynomial satisfies the rank-degree condition, assertion
of Theorem 3 holds true and formula (3) takes the form

P(AA+B)Q:/\<EOd 8)+(‘é Ef_d). (5)

2. The Main Results

Consider equation (1) such that the pencil AA + B is regular and its characteristic
polynomial satisfies the rang-degree condition. Then applying the matrices P and @ from
Theorem 3, by Theorem 4 we reduce (1) to the form

Ly(t) = My(t) + f(t,y(t)) (6)

where L = PLQ, M = PMQ, y(t) = Q 'x(t) and f(t,y(t)) = Pf(t,Q 'z(t)).

The block structure of the matrices in (5) determines the decomposition of R™ into
the direct sum R"® = R? @ R" 4. Using this decomposition, let us also decompose every
vector y € R™ into the pair y = y™) + y® where y € R? and y® € R* %, and vector
F(ty) into f(ty) = FO(yD + @) + fO(, 50 + y@) where Oty +y@) € RY
and f@(t,yM 4+ y?) € R"~9. Taking into account formula (5), after that we can rewrite
(6) in the form

(50 (220)- (4 2 (20) () o

Equation (7) evidently can be presented as the system of differential and functional

equations
g () = Ty D) + fOt y D) +y2 (1), 8
YO0 + [y +yP@) =0 )

Condition 1. We suppose that for every point (t,y™") € R x R there exists a unique
point y = d(t,yM) € R"4 that is smooth jointly in (t,y") and such that —f3 (t, yM +
ot yM)) = o(t,y) = y©®.

Remark 1. Under Condition 1 one can easily see that y® = ®(¢t,yM) € R" % is a
unique fixed point of the operator —f@ (¢, y™ + (-)) : R"~¢ — R"~ % This fixed point
exists, e.g., if f@(t,y™") + (-)) is Lipschitz continuous, i.e., if there exists & € (0, 1) such
that for every pair of points 21,2 € R™ % and every (t,y) € R x R? the inequality
£t yD + 21) — FO(t,yD + 2,)|| < k|lz1 — 2] holds. Note that k& may be a smooth
function depending on (¢,y")). The fact that y® = ®(t,yM) € R"? is smooth jointly in
(t,yV) can be derived from the implicit function theorem. A condition of this sort in the
language of functions ¥ (t) and 3 (¢) is used in [5].
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If Condition 1 is satisfied, system (8) is equivalent to the equation
g () = Ty (@) + fO (8, y M (@) + oty (1)) (9)

in R% Since the right-hand side of (9) is smooth, for every initial condition 3™ (0) =y, €
R? the equation has a unique (local) solution.

Condition 2. The function f(t,x) is given as follows: for every t € R and every y =
yM 4+ 42 € R" = R x R the equality f@(t,yM) 4+ y?) = —y@ holds.

Under Condition 2 the situation is trivial. Nevertheless we investigate this case since
Condition 2 is a very special example of Condition 1 and it allows us to obtain another
sort of necessary and sufficient condition for global in time existence of solution. Under
Condition 2 in system (8) we set y?(¢) = const and so reduce (8) to the system

gOt) = JyM () + fOEy D () + y@), 10

y® = const. (10)

in R™. Since the right-hand side of (10) is smooth, for every initial condition y(0) = yo =
y(()l) + yéz) in R” there exists a (local) solution of (10).

In obtaining the necessary and suffitient conditions for global in time existence of

solutions of (1), first we consider the case where Condition 1 is satisfied. Denote by
Y*(t,y™M) the vector field (1, Jy™ + fO ¢,y + @(t,y))) in R,

Theorem 5. Let the pencil N\L + M be regular, the characteristic polynomial satisfy
the rank-degree condition and Condition 1 be fulfilled. Then all solutions of (1) exist on
(=00, +00) if and only if there erists a complete Riemannian metric on R such that
the norm of vector field YV is uniformly bounded on R+,

Theorem 6. Let the pencil N\L + M be regular, the characteristic polynomial satisfy
the rang-degree condition and Condition 1 be fulfilled. Then all solutions of (1) exist on
(—00,+00) if and only if on R there exists a smooth proper function ¢ : R — R
such that the absolute value |Y T| of derivative of p in the direction of Y is uniformly
bounded on R4,

Indeed, Theorem 5 (Theorem 6) is a reformulation of Theorem 1 (Theorem 2,
respectively) for equation (9) on R%.

Now let us turn to the case, in which Condition 2 is satisfied. Here we introduce the
vector field Y (¢,y™, y®) = (1, JyM () + fO (¢, yV(t) + y@),0) on R,

Theorem 7. Let the pencil AL + M be reqular, the characteristic polynomial satisfy
the rank-degree condition and Condition 2 be fulfilled. Then all solutions of (1) exist on
(—00,+00) if and only if there exists a complete Riemannian metric on R™™! such that
the norm of vector field Y is uniformly bounded on R" .

Theorem 8. Let the pencil AL + M be regular, the characteristic polynomial satisfy
the rang-degree condition and Condition 2 be fulfilled. Then all solutions of (1) exist on
(=00, +00) if and only if on R there erists a smooth proper function ¢ : R — R
such that the absolute value |Y | of derivative of ¢ in the direction of YT is uniformly
bounded on R™*1,
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Indeed, Theorem 7 (Theorem 8) is a reformulation of Theorem 1 (Theorem 2,

respectively) for system (10) on R™.

The research is made at the expense of grant of Russian Scientific Foundation (project

14-21-00066) and Voronezh State University.
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O I'VIOBAJIBHBIX ITO BPEMEHU PEINTEHNAX
JINODPEPEHIINAJIBHO-AJITEBPATYECKIIX YPABHEHUII

IO.E. 'nuraux

Mpr uccaenyem mudepeHnnanbHo-aaredpanieckne ypaBHEHNs, BO3HUKAIOIIHNE B
MaTEeMATHIECKUX MOJENIAX HEKOTOPBIX PaJMOTEXHUYECKUX ycTBpoiicTB. OnucaH Kiacce
nuddepeHImaIbHO-ATeOpANYECKUX YPABHEHW, I KOTOPOrO JTOKA3AHBI HEOOXOAUMBIE U
JIOCTATOYHBIE YCJIOBUS JITsi TIOGATBHOTO TI0 BPEMEHU CYIIEeCTBOBaHus perieHuii. Kak u Bo
MHIHX JIDYTHX paboTax, B KOTOPBIX MOJYYEHBI JOCTATOUHBIE YCJIOBUS JJIsi TAKUX ypPaBHE-
HEA, MBI CBOIUM UX K OOBIKHOBEHHBIM MM DEPEHIINATHHBIM YPABHEHUSIM W 3aT€M MTPUME-
HsieM HeOOXOAUMBbIE W IOCTATOYHBIE YCIOBUS I MOCaeHIX. Mbl pACCMATPUBAEM CHCTEMBI,
Yy KOTOPBIX MATPUYHBIH My9IOK PETYJSPEH U (IJIs1 MPOCTOTHI) XapaKTEePUCTUUECKUH MHOTO-
YJIeH yIOBJIETBOPSIET YCJIOBHIO PAHT-CTENeHb. MBI Takke TpebyeM BBUTHEHUs] HEKOTOPBIX 10~
MOJTHUTEILHBIX YCIOBUI, KOTOPBIH TIO3BOJISIIOT CBOIUTS JuddepeHINaTHHO-aIredpaniecKue
ypaBHeHusI K auddepeHInaaIbHbIM.

Karuesve caosa: duddepenyuanvro-arzebpaudeckue ypasrenus; 2a00a4bHo0e cyule-

CMBOBAHUE PEWEHUT; COMeMeeppue 0OMOOPANCEHUA; NOAHAA PUMAHOBE MEMPUKQ.
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