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The linear model of plane-parallel thermal convection in a viscoelastic incompressible
Kelvin—Voigt material amounts to a hybrid of the Oskolkov equations and the heat equations
in the Oberbeck—Boussinesq approximation on a two-dimensional region with Bénard’s
conditions. We study the solvability of this model with the so-called multipoint initial-
final conditions. We use these conditions to reconstruct the parameters of the processes in
question from the results of multiple observations at various points and times. This enables
us, for instance, to predict emergency situations, including the violation of continuity of
thermal convection processes as a result of breaching technology, and so forth.

For thermal convection models, the solvability of Cauchy problems and initial-final
value problems has been studied previously. In addition, the stability of solutions to the
Cauchy problem has been discussed. We study a multipoint initial-final value problem for
this model for the first time. In addition, in this article we prove a generalized decomposition
theorem in the case of a relatively sectorial operator. The main result is a theorem on the
unique solvability of the multipoint initial-final value problem for the linear model of plane-
parallel thermal convection in a viscoelastic incompressible fluid.

Keywords:  multipoint initial-final value problem; Sobolev-type equation; generalized
splitting theorem; linear model of plane-parallel thermal convection in wviscoelastic

incompressible fluid.

Many phenomena and processes in econormics, physics, and technology, like, for instance,
plane-parallel thermal convection in viscoelastic incompressible fluid, are modelled by linear

Li=Mu+ f (1)

and nonlinear

Li = Mu+ N(u) + f (2)

Sobolev-type equations [33|. The interest in Sobolev-type equations, which nowadays form a large
subfield of nonclassical equations of mathematical physics [30], has been increasing recently; see
the wonderful historical survey in [31].

The goal of our study is the solvability of (1) with the so-called multipoint initial-final
conditions (see |5] for instance and reference therein)

Pj(u(1j) —uj) =0, wujeil, j=0,n,
—00<a<T <7 <...<T; <Tjp1 <...<b< +oo,

(3)

where P; are relative spectral projectors (we discuss them in Section 4), while u; are arbitrary
vectors in a Banach space 4. These conditions are used to reconstruct the parameters of the
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processes in question from the results of multiple observations at various points and times. This
enables us to, for instance, predict emergency situations, including the violation of continuity of
thermal convection processes as a result of breaching technology, and so forth.

We should note that problem (1), (3) in the case n = 1 (the initial-final value problem)
has been studied quite actively in various aspects. In particular, there are results concerning the
optimal control of the solution to these problems [9], including Sobolev-type equations of high
order [6].

The history of problem (1), (3) in the case n = 1 starts on the one hand in [12]|, where
it is called Verigin’s problem, and on the other hand, independently, in 32|, where it is called
the conjugation problem. However, in both cases instead of relatively spectral projectors Py and
P we consider spectral projectors of the operator L on assuming it to be selfadjoint. The first
results in this direction are presented in [19], which treats a particular case of problem (1), (3)
with, moreover, more rigid conditions on the L-spectrum of M than here. Problem (1), (3) is
considered in |2]| with the same conditions on the L-spectrum of M as in [19]; however, in this
case the possibility of greater freedom in relatively spectral conditions is mentioned. We should
note that there were attempts to study [18] the solvability of a particular case of problem (2) for
nonlinear Sobolev-type equations (3) in the case n = 1, but as yet these studies have not been
pushed further. In addition, if in (3) we put n = 0 then problem (3) reduces to the Showalter—
Sidorov problem [20], which has already played an important role in a number of models with
applications to economics |7| and technology [29].

Our approach rests on the theory of relatively p-sectorial operators and degenerate analytic
resolving semigroups of operators. Sviridyuk [14] pioneered the concept of a relatively sectorial
operator. He showed that relative sectoriality of an operator naturally generalizes the concept of
sectoriality [28]. However, it soon turned out that relative sectoriality generalizes the concept of
relative o-boundedness of an operator only in the case that the L-resolvent of M has a removable
singularity at infinity. In order to fill this embarrassing gap, Bokareva introduced [16] the concept
of relative p-sectoriality of an operator, generalizing the concept of relative o-boundedness in
the case that the L-resolvent of M has a pole at infinity. Then, relatively strongly p-sectorial
operators on the right (on the left) [16] and relatively strongly p-sectorial operators 24|, |25]
were introduced. Subsequently, relatively p-sectorial operators were studied in various situations.
Namely, Dudko studied [1] the case that both operators are closed and the spaces il and § coincide;
Efremov studied [17] optimal control problems for Sobolev-type equations with relatively p-
sectorial operators; Keller found [21] sufficient, and in some cases necessary, conditions for the
existence of bounded solutions to these equations; Kuznetsov [22] began to search for relatively p-
sectorial operators among elliptic operators; Yakupov used [26] relatively p-sectorial operators to
study the phase spaces of certain problems in the hydrodynamics of viscoelastic fluid.

Consider now a precursor of (2): a hybrid of Oskolkov’s system [11] and the heat equation in
the Oberbeck—Boussinesq approximation [8],

A=V =vV20— (v-V)v=Vp+gyS, V-v=0, )
S =0VS —v-VS+7v-v,

modeling thermal convection in a viscoelastic incompressible Kelvin—Voigt material [23]|. Here
v = (v1,v92,- - ,v,) with v; = v;(x,t) and n = 2 or 3 is the vector function representing fluid
velocity; the scalar functions S = S(x,t) and p = p(z,t) represent the temperature and pressure
of the fluid; the parameters A € R, v € R, and § € R characterize the elasticity, viscosity, and
thermal conductivity of the fluid; g € R is the free fall acceleration; finally, v = (0,...,0,1) € R”
and z = (x1,x2, - ,Z,). When one of the horizontal components of the velocity vanishes, (4)

6 Becrank FOYpI'Y. Cepus «<MaremaTuvueckoe MoOAeJUPOBAaHNE M POrpaMMHUPOBaHUe



OB30OPHBIE CTATHU

becomes
O o Ay 90
(/\—A)AE—VA () 9. 1) +a8m’ 5
a0 B d(¢,0) %
ot 0A0 A(z,y) + ﬂ@x’

which models plane-parallel thermal convection in a layer of viscoelastic incompressible Kelvin—
Voigt material.

For (4) Sviridyuk considered the first initial-boundary value problem [13] and showed that it
is solvable for arbitrary values of A\. Then jointly with Yakupov [26] he described the morphology
of the phase space of the Cauchy—Bénard problem for (5). Sukacheva and Matveeva studied [27]
the non-autonomous case of this problem. Subsequently they considered a generalized model of
thermal convection [10], established the local solvability of the Cauchy problem for it, and found
the solution numerically using the modified Galerkin method. We should also mention the studies
[4] of the stability of solutions to the Cauchy-Bénard problem for (5) in a neighborhood of the
origin. The existence of stable and unstable invariant manifolds in the problem was established
basing on the Hadamard—Perron theorem. Note also that [3] showed the unique solvability of the
initial-final value problem for the linearized model of thermal convection (4).

This article is devoted to a qualitative study of the multipoint initial-final value problem

(A= A)AYy = —vA*) —aby + &, 6y =600 — By + ¢ (6)

for the linear mathematical model of plane-parallel thermal convection in viscoelastic
incompressible fluid in the region Q = (0,a) x (0,b) € R? with Bénard’s boundary conditions

0(x,0,t) = 0(x,b,t) =0, (8)
the functions ¢ and 6 are periodic in x with period a. 9)

In the first three sections we collect auxiliary facts of Sviridyuk’s theory [15] of relatively p-
sectorial operators and degenerate resolving semigroups of operators, adapted to our situation.
In Section 1 we introduce the concept of a relatively p-sectorial operator. In Section 2 we consider
degenerate resolving semigroups of operators and the construction of units of semigroups of
operators. In Section 3 we counsider conditions for the existence of the inverse operator. In
Section 4 we prove a generalized splitting theorem for the spaces and actions of operators. There
we construct relatively spectral projectors, which in this case are units of the semigroups of
operators, on assuming relative p-sectoriality. In Section 5 we study the multipoint initial-final
value problem for Sobolev-type equations with a relatively p-sectorial operator M. The main
result of this section is a theorem on the unique solvability of problem (1), (3). In Section 6 we
apply these abstract results to the linear model of plane-parallel thermal convection in viscoelastic
incompressible fluid. There we reduce the stated problem to the abstract equation (1). We verify
the (L, 0)-sectoriality of M. The main result of this section is the theorem on the unique solvability
of the multipoint initial-final value problem (3). We should note that the author already discussed
[34] a generalized decomposition theorem in the case of strongly (L, p)-radial operator. We make
all arguments in real Banach spaces, but, while addressing spectral questions, introduce their
natural complexifications. All contours are oriented counterclockwise and bound the region lying
to the left as they are traversed.
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1. Relatively p-sectorial Operators

On assuming that  and § are Banach spaces, consider a continuous linear operator L &€
L(84;F) and a closed linear operator M € CI(4;§) whose domain is dense. Introduce the L-
resolving set p*(M) = {u € C: (uL—M)~' € L(F; %)} and the L-spectrum o¥(M) = C\ p(M)
of M. Provided that p”(M) # (), we can introduce the right and left

P p
L _ L L _ L
R(u,p) (M) = H Ry, (M) and L(u,p)(M) = H L, (M)
k=0 k=1
(L, p)-resolutions of M. Here Rﬁ(M) = (uL — M)7'L and Lﬁ(M) = L(uL — M)™!, while

pr € pH(M) for k=0,...,p.

Definition 1. [15] An operator M is called p-sectorial relatively to an operator L with p € {0}UN
(or briefly, (L, p)-sectorial) whenever there exist constants K € Ry, a € R, and © € (7/2,7) such
that

Sko(M)={ueC: |arg(u—a)| <O, u+#a} C p"(M); (10)
furthermore,
RE, (M Lt (M < K 11
max (/"p)( ) ,C(Ll) ’ (.u"p)( ) E(S) - pi ( )
11 e —a

for arbitrary pg € S(i@(M) for k=0,...,p.

Remark 1. If M is an (L, p)-sectorial operator and b > a then the operator M = M —bL is also

(L, p)-sectorial. Furthermore, we can choose the constant @ in 1 to be 0. Assume henceforth that
St (M) = S§(M).

Remark 2. If the operator L € L£(;F) has continuous inverse then the sectoriality of the
operator LM € CI(4) implies the (L, p)-sectoriality of M € CI(4;F), and the (L, 0)-sectoriality
of M implies the sectoriality of L~'M (or equivalently, of M L™1).

Lemma 1. If M is an (L, p)-sectorial operator then there exist R > 0 and C > 0 such that
[(uL — M) gy < ClulP for all p e S§(M)\ {p € C:|u| < R}.

Remark 3. (i) If M is an (L, p)-bounded operator and oo is an order 0 pole of the L-resolvent
of M then M is an (L,0)-sectorial operator.

(ii) If M is an (L, p)-bounded operator and oo is a pole of order at most p € N of the L-
resolvent of M then M is an (L, p)-sectorial operator.

Lemma 2. The following claims hold for every (L, p)-sectorial operator M :
(i) the length of every chain of generalized M -eigenvectors of L is bounded by p;
(ii) the set ker R (M) coincides with the M-root space of L;

(1,p)
(iii) ker Rf,, )(M) = {0} and ker L{;, (M) NimL{;

(M) N imR(Lu,p (1:p) (u,p)(M) = {0
(iv) the operator Myt € L(F0;U0) exists.

On assuming that M is an (L, p)-sectorial operator, recall the notation H = MO_1L0 and

G = LgMgl. Denote by ' the closure of the linear subspace imR(LM p)(M). Denote by {l the

closure of the linear subspace ilO{LimR(Lu p)(M ) in the norm of 4. Denote by §' the closure of the

linear subspace imL(LM p)(M ), and by & the closure of the linear subspace 304—imL(LM p)(M ) in the
norm of §.
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Lemma 3. The following claims hold for every (L, p)-sectorial operator M :
(i) the operators H and G are nilpotent of degree at most p;
(1) ligl (,URﬁ( NPy = u for every u € U and lim (MLL(M))pr = [ for every
p—>=+00

fegl. H—>—+00
(iii) U= @ U and F=F" @ F'.

Denote the projector onto 4! parallel to 80 by P = s- lirf (,uRﬁ(M))f‘”rl and the projector
p—+o00
onto §' parallel to F° by Q = s- lim (pLﬁ(M))P+1,
p—>+00

2. Degenerate Analytic Resolving Semigroups of Operators

On assuming that 4 and § are Banach spaces, take an operator L € £(i; F) and an operator
M € Cl(Y;§). The equation

Li = Mu (12)

reduces to the equivalent pair of equations
R (M)i = (pL — M)~ Mu, (13)
LE(M)f = M(uL — M), (14)

It is convenient to regard (13) and (14) as concrete interpretations of the abstract equations
Aé = Bu (15)

defined on a Banach space U with A, B € L(0). Refer as a solution to (15) to a vector function
v(t) € C°(Ry; V) satisfying this equation for ¢ > 0 and continuous at 0.

Definition 2. A mapping V* : Ry — L(%0) is called a semigroup of resolving operators (or simply
a resolving semigroup) of (15) whenever

(i) VeVt = Vst for all s,t > 0;

(ii) for every vy € U the function v(t) = Vuy is a solution to this equation.

A semigroup {V*: ¢ > 0} is called analytic whenever it can be analytically continued to some
sector ¥ C C including the ray R, that is, there exists an analytic mapping V® : ¥ — £()
enjoying properties (i) and (ii) of the previous definition (with s,¢ € ¥), coinciding with V* on
the positive semi-axis. In addition, {V* : ¢ > 0} is called uniformly bounded whenever ||[V*|| ) <
const for all ¢ € R.

Theorem 1. For every (L, p)-sectorial operator M there exists a resolving semigroup {U* : t > 0}
(or {F':t>0}) of (18) (respectively (14)) which is analytic in the sector

Y={reC:|arg7| < © —7/2 with T # 0},
where we take © from Definition 1, and uniformly bounded. Furthermore, this semigroup is defined
by the integrals

1

21
r

=5 / RE(M)etdy  (F'= — [ LL(M)eMdp) (16)

of Dunford—Taylor type, where t € Ry, and the contour T' C Sie(M) satisfies |arg u| — O as
w—o00 and peT.
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Lemma 4. If M is an (L, p)-sectorial operator then lim Ulu = u for every u € imRF )(M)

t—0+ (1
. te : L
and tLH(I)ErF f=1f forevery f € 1mL(M7p)(M)).

Lemma 5. If {V':t > 0} is an analytic semigroup then ker V't = ker V2 for all ty,ty > 0.

Definition 3. The set ker V® = ker Vit > 0 is called the kernel of the analytic semigroup
{Vt:t>0}.

The preceding statement shows that the kernel is well-defined.
Consider the kernels of the semigroups U® and F'*:

kerU* ={pci:Ulp=03FHcRy}, kerF*={¢pcF:F=073cR}.

Put 4% = kerU® and F° = ker F*. Denote by Lg the restriction of L to 4%, and by My the
restriction of M to 4N dom M.

As in the case of holomorphic groups, it is clear from the expressions (16) of the resolving
semigroups of (13) and (14) that their elements have nontrivial kernels ker U? D ker R{;(M ) and
ker F'* D ker L{;(M) for every t > 0.

The kernel of an analytic semigroup is obviously a subspace. Denote by Lo (MO) the restriction
of L (M) to kerU® (ker U®* N'dom M).

Lemma 6. If M is an (L, p)-sectorial operator then
Lo € L(kerU®;ker F*), My : ker U* Ndom M — ker F*.
Denote by ag(M) the Lo-spectrum of M.
Lemma 7. If M is an (L, p)-sectorial operator then aoﬁ(M) contains no finite points.

Corollary 1. If M is an (L,p)-sectorial operator then the operator Mo_l € L(ker F*;kerU®)
exists.

Theorem 2. If M is an (L, p)-sectorial operator then ker U® = U° and ker F* = FV.
Definition 4. Refer as the image of a semigroup {V* :t > 0} to the set

imV*={veY:v= lim Viv}.
t—0+

Lemma 8. Every analytic semigroup {V*' :t > 0} satisfies ker V* NimV*® = {0}.
Lemma 9. If {V!:t > 0} is a strongly continuous and uniformly bounded semigroup then
imV® = | JimV*
>0
Theorem 3. If M is an (L, p)-sectorial operator then imU® = 4! and imF* = F*.

Put U = U'[ and F* = F'|+.
Consider the images of the semigroups U® and F'*:

: o __ R E t,, : o __ R E tp
im U —{ueﬂ.tgrgl+Uu—u}, im F —{fES.tgrél+Ff—f}.

Put 4! = im U® and §' = im F*. Denote by L; the restriction of L to Y, and by M; the
restriction of M to ' N dom M.
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Corollary 2. If M is an (L, p)-sectorial operator then

P=s-lim U, Q=s- lim F"
t—0+ t—0+

The operators

T t e T t
P—stglgl+U eLW), Q stglg1+F € L(F),

whenever they exist, are called the units of the semigroups {U? : ¢ > 0} and {F" : t > 0}. It is
not difficult to see that the units of semigroups are projectors.

Definition 5. An operator M is called strongly (L, p)-sectorial on the right (on the left) whenever
it is (L, p)-sectorial and for A, po, o1, ..., fp € Sé(M) we have

— const(u
IRE, ) (MY(AL — M)~ My < ~<22510)
Al TT [ru]
k=0

o]
for arbitrary u € dom M (respectively, there exists a dense linear subspace § of § such that

ML — M) L, (M) < 220
A o

for arbitrary f 6%)

Remark 4. (i) If M is an (L,o0)-bounded operator and oo is a removable singular point of
the L-resolvent of M then M is a strongly (L, 0)-sectorial operator on the right and on the left.

(ii) If M is an (L,o0)-bounded operator and oo is a pole of order at most p then M is
a strongly (L, p)-sectorial operator on the right and on the left.

Theorem 4. If M is a strongly (L, p)-sectorial operator on the right (on the left) then the units
of the semigroups {U' : t > 0} and {F':t > 0}) exist. Furthermore, the operators P € L({) and

Q € L(F) satisfy
L € L(ker P;ker Q) N L(AmP;im@), M € Cl(ker P;ker Q) N CI(imP;im@).

Remark 5. Theorem 4 also holds in the case that M is an (L, p)-sectorial operator, but under
the additional requirements that the spaces 4l and § are reflexive (the Yagi-Fedorov theorem).

Corollary 3. If M is a strongly (L, p)-sectorial operator on the right (on the left) then
Lol =u@F e =7). (17)

Corollary 4. If M is a strongly (L, p)-sectorial operator on the right and on the left then
(i) Vu € 4 LPu = QLu;
(i) Yu € dom M Pu € dom M and M Pu= QMu.

Recall that L = L‘u’“ and M = M‘dom while dom M}, = dom M NYF for k =0, 1.

My’

Corollary 5. If M is a strongly (L, p)-sectorial operator on the right and on the left then My €
CL(U°; F°) is a bijective operator and My € CI(UY; F1).
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3. Existence of the Inverse Operator

On assuming that Y and § are Banach spaces, take L € L(4;F) and M € CI(LL; §).
We now indicate conditions for the existence of the operator LT € £(F';4'). To this end,
we use an integral of Dunford-Taylor type to define the family of operators {R' : ¢t > 0} as

1
R'= — [(uL— M) 'e'd 1
o [ (L~ a) e, (15)
r
where the contour I' satisfies (16), while M is an (L, p)-sectorial operator, and so the integral

converges.

Lemma 10. If M is an (L,p)-sectorial operator then the family {R! : t > 0} defined in (18) is
analytic in the sector {T € C: |arg7| < © — 7/2}.

Lemma 11. In the hypotheses of Lemma 10, we have
(i) Vt >0 R'L = Ut and LR! = F;
(ii) Vs,t >0 RS = USR! = R'FS.

Lemma 12. If M is a strongly (L, p)-sectorial operator on the right (on the left) then
(i) Vt>0 R'=PR' (R'=RQ);
(ii)) |JimR' =4t (Vt >0 ker Rt =30).
t>o
We can also observe that, as in the case of semigroups, the images of the operators R! increase
as t decreases: imR® C imR! for s > ¢ > 0 follows from claim (ii) of Lemma 11.

Definition 6. An operator M is called strongly (L, p)-sectorial whenever it is strongly (L, p)-
sectorial on the left and

_ const
VA, 10, oos tp € SE(M) | RE, ) (M)(AL = M) ™ g9 € ———
AT

Remark 6. Every strongly (L, p)-sectorial operator M is strongly (L, p)-sectorial on the right.

Remark 7. If the operator L~! € £(F;4) exists and the operator T = ML~! (or S = L' M) is
sectorial then M is a strongly (L, p)-sectorial operator. We can take L{dom M] as a dense linear

subspace § of §.

Remark 8. If M is an (L, 0)-bounded operator and oo is an inessential singular point then M
is a strongly (L, p)-sectorial operator.

Lemma 13. If M is a strongly (L, p)-sectorial operator then the family of operators {R! : t > 0}
defined in (18) is uniformly bounded.

Theorem 5. If M is a strongly (L, p)-sectorial operator then
the operator Ly € L(F';4U")  exists. (19)

Remark 9. Condition (19) holds provided that M is a strongly (L, p)-sectorial operator or (17)
is fulfilled and im L; = §' (Banach’s Theorem).

The restriction {Uf : t > 0} ({F}:t € Ry}) of the semigroup {U? : ¢t > 0} ({F?:t > 0}) to
the subspace U!' (') is a nondegenerate analytic semigroup.
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Keep the above notation S; = Ll_lMl and T} = MlLl_l.

Corollary 6. In the hypotheses of Theorem &, the operator S € Cl(sY) (Ty € CI(TY)) is
an infinitesimal generator of the semigroup {U} : t > 0} ({Ff:t € Ry}).

The Hille—Yosida—Feller—-Miyadera—Phillips theorem immediately yields
Corollary 7. In the hypotheses of Theorem 5, the operator Sy (T1) is sectorial; furthermore,
ol(M) = o(S1) = o(Th).

4. Generalized Splitting Theorem

On assuming that 4 and § are Banach spaces, take L € L(U; F) and M € CI(4L; §) so that M
is an (L, p)-sectorial operator. In addition, assume that

LM = U UJ'L(M), n € N; furthermore, ajL(M) £ 0

lies in a bounded region D; C C
(20)

with piecewise smooth boundary 0D; =1'; C C, j = 1,n.

In addition, D;j No&(M) = 0 and Dy, N D; = 0
for all j,k,l=1,n,k #1.

J

Theorem 6. If M is an (L, p)-sectorial operator and (20) holds then there exist projectors P; €
L) and Q; € L(F) for j = 1,n, which are of the form

Ly L i
LM =Tn.
P = 2m/ Ry (M)dp, Qj = /Fj p(M)dp, j=T1,n (21)

Corollary 8. The hypotheses of Theorems 4 and 6 yield P;P = PP; = P; and Q;Q = QQ; = Q.
n
Put Py = P — ) P;. Corollary 8 implies that Py € £(Ll) is a projector.
j=1

Corollary 9. If M is an (L, p)-sectorial operator then
(i) Lo € LU F0) and My € CI(U%F), and moreover, the operator Myt € L(F%;U°) ewists;
(i) Ly € LU FY) and My € CI(UY; FY).

Assume now that, apart from (20), conditions (17) and (19) are fulfilled.

Corollary 10. If M is an (L, p)-sectorial operator, while (17) and (19) hold, then G = My 'Lg €
L(4U%) is a degree p nilpotent operator, while S = L7 My € CI(U') is a sectorial operator.

Theorem 7. If M is an (L, p)-sectorial operator and (17), (19), and (20) hold then
U' = PU' + RU' =Uj + U§, F' = Q;F" + QoF" = F} + F{;
furthermore, we can express U]'? and th as

1
Ut = RY(M)etdp, Ff=_—
I o r, (M)etdp 7 2mi Jp,

LE(M)etdp, j=Tn (22)

where T';, j =1,n is defined in (20).
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Proof. Indeed, since the analytic semigroup U] extends to an analytic group, it follows that
U0 P;. Hence,

PU" = (2mi)~ / / R (M)RL(M)e" dudy =

e’tdy du y ,
(2mi)~ ( / RL du+/ M_V/FRﬁ(M)e tdy) :U;, j=1,n,

by the residue theorem and the analog of Hilbert’s identity for the L-resolutions
(v = p) Ry (M)Ry (M) = Ry (M) — Ry (M).

This also implies that P;P = PP; = P;.

O
Put im P; = 4V and im Q; = Y for j = 0,n. By construction,
4 =PHuY and ' = PV
j=0 j=0

Denote by L; (M;) the restriction of L (M) to Y; (domM N ;) for j = 0,n. By analogy with
Corollary 9, we can easily show that L; € L£(4l;;§;) and M; € Cl(4;; ;) for j = 0, n. Furthermore,
by (19) the operators L Leo(3;u ) for j = 0,n exist. Also it is not difficult to show by analogy

with Corollary 10 that So = Ly "My € Cl(tlp) is a sectorial operator, while S; = Ly "My — 8
for j = 1,n are bounded operators.

5. Multipoint Initial-Final Value Problem for Sobolev-Type
Equations with a Relatively p-sectorial Operator

On assuming that 4 and § are Banach spaces, take L € L(4; §) and M € CI(4L; §) so that M
is an (L, p)-sectorial operator. In addition, assume that conditions (17), (19), and (20) are fulfilled.

Taking 7; € Ry (75 < Tj41), uj € thfor j =0,n, and f € C°(R4;3F), consider the problem

Pj(u(rj) —u;) =0, j=0,n, (23)
for the linear Sobolev-type equation
Li= Mu+ f. (24)
Refer to a vector function u € C1((0,7,); U) N C([0, 7,]; L) satisfying (24) as its solution; refer to
a solution u = u(t) to (24) as a solution to problem (23), (24) whenever tEer Py(u(t) —up) =0
70

and Pj(u(rj) —u;) =0 for j =1,n.
We are now ready to prove the unique solvability of problem (23) for (24). Since M is
n (L, p)-sectorial operator, while (17), (19), and (20) hold, the problem reduces to

G = u® + My fO, (25)

W =S + L Y, j=0,n (26)
where f = (I - Q)f and f% = Q, f, while u° = (I — P)u and u" = Pju, for j = 1,n.

Lemma 14. If M is an (L, p)-sectorial operator, while conditions (17), (19), and (20) are fulfilled,
then for every vector function

2 € ([0, 7 3%) N CPFH(0,7); §)
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there ezists a unique solution to (25); furthermore, it is of the form

p

ul(t) ==Y GIMy' D (1),
q=1
Proof. Substituting u® = u°(t) into (25), we verify that a solution exists. The successive

differentiation of the homogeneous equations (25),
0=GPu?) = =Gul =,

justifies uniqueness.

O
Lemma 15. In the hypotheses of Lemma 14, for all uj € 4 and f19 € C([0,7,]; FV) there exists
a unique solution to problem v’ (7;) = Pju; = 0 for the equation with index j in (26); furthermore,
it 1s of the form
t
uH(t) = U;‘Tjuj + / | ULy} Q; f(s)ds.

Tj

Proof. By substitution, we verify that u/ = u/(t) is a solution to this problem. Suppose that
v/ = vI(t) for t € [0,7,] is another solution to this problem. Construct the vector function
w(s,t) = LjU;_Sv(s). By construction,

ow(s,t) L.BU;_S
ds 7 0s

ov(s)

0s =0

v(s) + Ljth-_s

t—’T]'

Hence, w(7;,t) = w(t, t), that is, U; .

O
Theorem 8. If M is an (L, p)-sectorial operator, while (17), (19), and (20) hold, then for every
vector function with O € CP([0,7,]; ) N CPH1((0,7,); &%) and f1 € C([0,7.];F) there emists
a unique solution to problem (23), (24); furthermore, it is of the form

u(t) = ul(t) + > ul(t).
j=1

6. The Linear Model of Plane-Parallel Thermal Convection
in Viscoelastic Incompressible Fluid

Consider the linear model

(A= A)AY = vAY — af, + &, 6, = SA0 — Biiy +C (27)

of plane-parallel thermal convection in viscoelastic incompressible fluid in the region Q = (0, a) x
(0,b) € R? with Bénard’s boundary conditions

¥(x,0,t) = Ap(z,0,1) = P(z, h,t) = Ag(z, h,t) = 0, (28)
0(x,0,t) = 0(x,h,t) =0, (29)
the functions ¢ and 6 are periodic in x with period [. (30)
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Put 4 = U x W and §F = & x H, where U = {v € WF(Q) : v satisfies (28), (30} and
W =06 == Ly(N). Define L and M as

0
2

L:<()\—A)A o> [P
0o 1) 9

N
Oox

It is obvious that L € L£(4;§), while M € CI(4;F) with
dom M = U x {w € WZ(Q) : w satisfies (28) and (29)}.

In order to prove that M is an (L,0)-sectorial operator, consider the eigenfunctions of the
Laplace operator A on {2 satisfying (28) and (30). It is convenient to split these eigenfunctions
into three families:

= coszﬂmxsin@ , Fh= sin2ﬂkxsinw—ly , Fs3= sin 2% ,
a b a b b

where 7, k:, I, m, n € N. Henceforth we denote the normalized functions in each family by ¢L
cpk,l, and <pJ, while the corresponding eigenvalues by Al )\il, and )\?. To construct the operator

mn’

(uL — M)~! we apply Fourier’s method: expand the functions v, w, g, and h into Fourier series
with respect to the functions {¢2,,} U{p%}U {go } and insert the resulting series into the system

wA = A)Av —vAv — aw, = g, (u— IA)w — v, = h.

Applying a series of orthogonal projectors yields blocks of six equations:

m™m
)‘Tlrm[:u’()‘ - )‘Tlrm) - V)‘}rm]vl - O‘Tw?nn = gmn7

7k
Al = X5 = v JoR, + a;wlil = i
A[u(X = X3) = vAlu? = g2,
(,U, - 6>‘71nn) Wimn — /B
(1 — 5/\1@1)“%1 + 5 ’Ukz = hiy,
3 3

1
e (31)

mn?

To solve this system, observe firstly that without loss of generality we may take k = m and [ = n.
Observe in addition that AL, = A2, - therefore, put AL, = A2,, = Amn. Solving (31), we obtain
the L-resolvent of M as the square matrix A = HAZJHZ’F1 whose entries we can express as

All = Z Amn)\mn[u()‘ - )\mn) - V>\mn] <‘7 Qorlnn> SO}rmv A15 = Z Amna_laﬂ-m <'7 8012nn> (prlnm
m,n

i m,n
Aoy = Z Amn)\mn[llf()\ - )\mn) - V>\mn] <'v 90$nn> @?rmu Agy = — Z Amna_laﬂ-7n <" sorlrm> wgnn’
L Gene 2y
A33 = A42 Amn/BGf ™m Pmn) Pmns
RO A oA AT )

Agg = Z Amn(ﬂ - 6)‘717177,) <7¢}71n> wmn? A51 == Z ApnBa™ 7Tm<'7()011nn> wgnn?

m,n

Ass = > Apmn(p — 0Aimn) <'v$0$nn> %%mv Ags = D M
m,n j M~ 5)\]

16 Becrank FOYpI'Y. Cepus «<MaremaTuvueckoe MoOAeJUPOBAaHNE M POrpaMMHUPOBaHUe



OB30OPHBIE CTATHU

Here AL = Mnn[t() = Ajn) — VA (10— 0Aimn) + aBa™2m%m? and \; = /\3 while all remaining
matrix entries are equal to the zero operator Q. This 1mphes firstly, that the L-spectrum of M
is

I VAmn VA
M)=q+—7— mn mn — <mn 2
o” (M) {A_/\anrg }u{é/\ € }u{A /\}u{é/\} (32)

[Emnl ~ \/’ mnA Amn)

as m,n — oo, and since Ay, ~ —m? —n?asm,n — 00, it follows that there exists a sector of
the required opening angle which includes o (M). Secondly, for sufficiently large |u| outside this
sector we have

Here

max {|| R} (M)|| s 1L (M)|| ), } < const [p| 7.
This justifies
Lemma 16. For all o, 5,\,v € R and 6 € Ry, the operator M is (L,0)-sectorial.

Let us now verify (17) and (19) Since Y and § are reflexive spaces, Lemma 16 and the
Yagi—Fedorov theorem imply that condition (17) is fulfilled. Furthermore,
)40 =30 = {0}, U = &L, and §' = F if A # A and A £ A5

(
(ii) 80 = F° = ker L = span {col (¢;,0)}, U = {u € s : (u,p;) = 0}, and F' = {f € § :
(9,95) =0} =im L if A # Ay and A = Aj;
(i) & = F% = kerL = span {col (o1, 0), col (¢, 0)}, § = {f € F : (9,¢hn) =
0,k = 1,2} = imL, U = {ueth:v=04vu,(w), 0¢k,)=0 k=12 vy,(w)=
= 2mma~ v IAE (W, Prn ) P + (W, @) Pian) A = A and A # X
Condition (19) is also fulfilled; furthermore, we can express the operator Lfl as the square
matrix A = HAin?,j:1 with

) {5 Poan) Prmn s Pon) Poan 05 wg
A= 2 O ) +Z AmnA Mo +ZA )

Aot = Vipn, A21 =0, A =1,

v [ 0= A,
"= amma AR (- ) @2 + (3 ) Phan) i A 7 A

The prime on the sum symbol indicates that the terms with A = A, or A = A; are absent. This
justifies

where

Lemma 17. Conditions (17) and (19) are fulfilled for all a, B, \,v € R, and 6 € Ry.

By (32), the L-spectrum o*(M) of M is discrete. This means that the hypotheses of Theorem
6 hold as well; moreover, they do for every closed contour v € C bounding a region which contains
finitely many points of o (M) and is disjoint from o¥(M). Therefore, the hypotheses of Theorem 8
hold, and so we have

Theorem 9. For all a, B, \,v €R, 6,7; € Ry, uj € U for j =0,n, and &,¢ € CH([0,7]; L2(Q))
there exists a unique solution to problem (23) for (27) with boundary conditions (28)-(30).

The author is grateful to Professor G. A. Sviridyuk for fruitful discussions and interest in
this work.
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MHOT'OTOYEYHA A HAYAJIBHO-KOHEUYHA 91 3AJTAYA
JJ14d JJMHEVHOM MOJIEJIN ITJIOCKOIIAPAJIJIEJIBHOI
TEPMOKOHBEKIINU BA3KOVIIPYIO1 HEC2KIIMAEMON
KUNIKOCTHU

C.A. 3azpebuna

JluneitHas MOAeNb TIOCKOTAPAJIEIBHON TEPMOKOHBEKITNN BI3KOYIIPYTOil HECKIMAES-
moii cpenpt Kenbeuna — @oiirra mpeacrasiser coboit rubpu cucrembl ypasuaernii Ockom-
KOBa M YpaBHEHHUs TeILIonpoBogHocTr B npubamxkennn Obepbeka — Byccunecka, 3aman-
HBIX B JBYMEpPHOI obsactu ¢ ycioBusimu Benapa. Ilenpio Hamero ncciaenoBanus sBIS€TCS
PAa3pEITUMOCTD ITOM MOJIEH C TAK HA3BIBAEMBIMU MHOTOTOYEYHBIMU HAYAIbHO-KOHETHBIMA
ycoBusiMu. Takue yCaOBUS UCHOJNB3YIOTCH I BOCCTAHOBJIEHUS MTAPAMETPOB U3YYaeMBbIX
MIPOTIECCOB TI0 PE3Y/IBTATAM MHOTOYHMCIEHHBIX HAOIIONEHNH C PA3JIMIHBIX TOYEK U B PA3IUI-
HBIE MOMEHTHI BPEMEHH, 9TO MTO3BOJISET, HAIPUMED, IIPOrHO3UPOBATH ABAPUMHBIE CUTYAIINH,
B TOM YHCJI€ HAPYIIEHUE HEIIPEPHIBHOCTH MIPOIECCA TEPMOKOHBEKITUN B PE3YJILTATE HAPYIIIE-
HUST TEXHOJIOTUN U T.1I.

Panee nns momenmeii TEPMOKOHBEKIMM W3ydYajgach pPa3permmMocTh 3amad Komm u
HAYATHbHO-KOHEYHOM, KPOME TOro, ObLIa PACCMOTPEHA YCTOWYMBOCTH pernenwuii 3aga4un Ko-
. MHOroTodevunas HAYAJIbHO-KOHEYHAS 33/a4a JJIs ITONH MOJENN W3ydIaeTcsl BIIEPBbBIE.
Kpowme toro, B mamHo# pabore MPUBOIUTCI JA0OKA3ATEIHCTBO ODOOINEHHON TEOpEeMbI O Pac-
MIEIJIEHUH B CJIy9ae OTHOCUTEIHHO CEKTOPUAILHOTO oneparopa. QCHOBHOI pe3ysibrar cra-
ThHU — TEOPEMa, 00 OTHO3HATHON PA3PEITUMOCTH MHOTOTOUYETHON HAYAJIBHO-KOHETHOU 33,/1a9u
JUTST JIMHEHHOM MOMENN TJI0CKONAPA/IIEbHON TEPMOKOHBEKITUU BI3KOYIIPYTOM HECKIMAES-
MOH >KHIKOCTH.

Katouesnte c106a: MHOZ0MOYEUHAA HAYAADHO-KOHEUHAA 300040, YPABHEHUE CODONEBCKO-
20 muna; 060OWENHAA MEOPEME O PACUENACHUY; AUHETHAA MOJEAD NAOCKONAPAALLADHOT

MEPMOKOHBERKUUUY eﬂsnoynpyeoﬁ HECHCUMAEMOT DICUIKOCTIU.
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