НАРУШЕНИЕ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ КЛЕТОК И МЕЖКЛЕТОЧНОЙ КООПЕРАЦИИ В КРОВИ В РАННИЕ СРОКИ РАЗВИТИЯ ЭКСПЕРИМЕНТАЛЬНОГО ПИЕЛОНЕФРИТА

Д.М. Смирнов, А.С. Вершинин, В.А. Бычковских Челябинская государственная медицинская академия, г. Челябинск

В ходе экспериментального исследования установлено, что одну из ключевых ролей в развитии синдрома системного воспалительного ответа при экспериментальном пиелонефрите играет нарушение процессов клеточного взаимодействия и реологических свойств крови.

Ключевые слова: острый пиелонефрит, воспалительная реакция, лейкоциты, межклеточные взаимодействия в крови.

Острый пиелонефрит является одной из наиболее актуальных проблем современной неотложной урологии [1, 4, 13]. Являясь самостоятельным, или осложняя течение других урологических заболеваний, острый пиелонефрит нередко приводит к потере почки [1, 12, 17]. На сегодняшний день, несмотря на успехи хирургического лечения, интенсивной лекарственной терапии, заболеваемость пиелонефритом не имеет тенденции к снижению [4, 13, 14, 17].

Одной из главных причин неудовлетворительных результатов лечения больных, перехода процесса в гнойно-септическую или хроническую форму, по всей видимости, является отсутствие единого понимания патогенеза септического процесса с его ранних сроков [13, 17]. Общепризнано, что воспалительный процесс является фактором активации клеток крови и эндотелиоцитов, что с позиции теории о единой клеточно-гуморальной системе защиты организма предполагает реактивные изменения клеточно-клеточного взаимодействия в крови [3, 15, 16]. Быстрое накопление в тканях и биологических жидкостях эндотоксинов в аномально высоких концентрациях, срыв механизмов регуляции воспалительного ответа обуславливает развитие тяжелых эндотоксикозов, микроциркуляторных и декомпенсированных метаболических нарушений, что и определяет, в конечном счете, исход заболевания [3, 4, 12]. Традиционные рутинные методы исследования не дают полной информации об особенностях изменения клеточного метаболизма в ходе течения острого пиелонефрита, что требует разработки новых подходов [13, 14, 17].

Изложенные выше обстоятельства определили **цель** нашего исследования: изучить в эксперименте изменения функциональной активности клеток крови, клеточно-клеточные взаимодействия в динамике на ранних сроках развития острого пиелонефрита.

Материалы и методы. Работа выполнена на 124 половозрелых крысах линии Wistar обоего

пола, массой 270–325 г. Все исследования проведены в соответствии с этическими нормами гуманного обращения с экспериментальными животными. Проведено 2 серии экспериментов: А – контрольная серия (n=24) – здоровые наркотизированные животные, у которых в «остром» опыте на фоне ложной операции проводили забор биологического материала (кровь, кусочки внутренних органов). У животных серий В (n=100) моделировали острый пиелонефрит путем пункции лоханки правой почки и введения аутофекальной взвеси [7]. Описанные показатели изучали в динамике 2–5-х сут развития заболевания.

В работе использовали стандартные методы клинической лабораторной диагностики (определения общего количества эритроцитов, лейкоцитов, тромбоцитов, лейкограммы) [9]. Адгезивную способность клеток крови определяли с использованием эндотелия аорты крыс по оригинальной методике [5]. Также определяли плотность поверхностного электрического заряда мембраны лейкоцитов, эритроцитов [11], миграционную активность лейкоцитов [2], фагоцитарную функцию лейкоцитов [10], сорбционную способность эритроцитов [8], клеточно-клеточные и межклеточные взаимодействия в крови [6]. Бактериологические и морфологические исследования включали посевы крови, мочи с идентификацией возбудителя, стандартное патогистологическое исследование аутопсийного материала. Обработка материала проведена стандартными методами описательной и вариационной статистики с использованием лицензионных пакетов прикладных программ.

Результаты и их обсуждение. Развитие острого пиелонефрита, подтвержденного патоморфологическими и бактериологическими методами, у животных происходило уже на 2-е сут эксперимента. С этого времени выявлялись достоверные клинико-лабораторные признаки синдрома системного воспалительного ответа: лихорадка, тахипноэ, нейтрофильный лейкоцитоз со сдвигом в лейкограмме в сторону юных форм нейтрофилов. Во все

Таблица 1

Изменение количества и функций лейкоцитов в ходе развития острого пиелонефрита (M \pm m; σ)

		Общее	Адге	Адгезия, %	Общее	МЕЕШЦ	Индекс	Фаго	Фагоцитоз
Группы сравнения	нения	количество, $\times 10^9/л$	Грануло-	Агрануло-	количество $\Pi A. \times 10^9/\pi$	эл. ст. ед./см ²	хемотаксиса, v.e.	ΑΦ, %	ИФ, v е /кп
Интактные		9,94 ± 0,35;	$9.94 \pm 0.35; 68.64 \pm 4.02;$	$21,55 \pm 3,64;$	$1,08 \pm 0,12;$	2509,58 ± 61,61;	0.97 ± 0.03 ;	$23,00 \pm 0,74;$	$3,45 \pm 0,26;$
животные $(n = 24)$	(4,	1,20	9,84	8,92	0,28	213,42	0,08	2,45	0,85
	2 cyr	11,24 \pm 0,68; 74,94 \pm 4,52;	$74.94 \pm 4.52;$	$19,68 \pm 6,16;$	$1,12 \pm 0,09;$	$2575,00 \pm 78,52;$	$1,01 \pm 0,02;$	$34,78 \pm 2,01;$	$3,45 \pm 0,26;$
	(n = 25)	1,68*	*60,01	15,09**	0,21	192,33	0,07	6,02*	0,77
	3 cyr	3 cyr 17.83 ± 0.69 ; 71.05 ± 3.03 ;	$71,05 \pm 3,03;$	$20,45 \pm 2,16;$	$1,38 \pm 0,17;$	3521,67 ± 77,43;	$1,00 \pm 0,04;$	$31,20 \pm 1,16;$	$3,11 \pm 0,17;$
Modens	(n = 25)	(n=25) 2,06*	7,41**	1,74	0,40*	189,68*	0,05	2,59	0,63
«Острыи	4 cyr	4 cyr $ 15,40 \pm 0,41; 69,02 \pm 1,33;$	$69,02 \pm 1,33;$	$15,17 \pm 2,16;$	$1,49 \pm 0,19;$	$4121,67 \pm 83,72;$	$1,03 \pm 0,06;$	$35,00 \pm 1,49;$	$2,76 \pm 0,18;$
пислонефрит»	(n = 30)	1,00*	2,97	4,82**	0,45*	205,08*	0,14**	4,47*	0,55*
	5 cyr	5 cyr $15,98 \pm 1,00$; $72,39 \pm 3,09$;	$72,39 \pm 3,09;$	$20,46 \pm 4,14;$	$1,52 \pm 0,19;$	$3400,00 \pm 159,73;$	$1,05 \pm 0,04;$	$39,78 \pm 1,75;$	$5,30 \pm 0,32;$
	(n = 20)	(n=20) 2,46*	7,56	10,14	0,47*	391,25*	0,11**	5,23*	1,17*

Таблица 2

Изменение количества межклеточных коагрегатов в ходе развития острого пиелонефрита, \times 10 9 /л (M \pm m; σ)

			ЭЛК			JITK			ЭТК	
Группы сравнения	нения	Общее кол-во	Малые	Большие	Общее кол-во	Малые	Большие	Общее кол-во	Малые	Большие
Интактные		$6,88 \pm 0,49;$	$6.88 \pm 0.49; 5.40 \pm 0.52;$	$1,48 \pm 0,23;$	$5,36\pm0,56;$	$3,43 \pm 0,65;$	$1,93 \pm 0,15;$	$50.88 \pm 3.79;$	$48,26 \pm 3,40;$	$2,61 \pm 0,56;$
животные $(n = 24)$	4	1,21	1,28	0,56	1,37	1,59	0,37	9,27	8,34	1,36
	2 cyr	$7,90 \pm 2,12;$	$7,90 \pm 2,12;$ $6,18 \pm 1,11;$	$1,73 \pm 0,21;$	$4,55 \pm 0,38;$	$3,31 \pm 0,35;$	$1,24 \pm 0,11;$	$47,31 \pm 2,39;$	$44.51 \pm 1.85;$	$1,80 \pm 0,33;$
	(n = 25)	4,30	2,36	0,52	0,93	0,87	0,27	4,91**	3,79	0,81**
Monor	3 cyr	3 cyr $ 8,41 \pm 1,18; 6,41 \pm 0,69;$	$6,41 \pm 0,69;$	$2,00 \pm 0,51;$	$5,42 \pm 0,44;$	$3,82 \pm 0,51;$	$1,60 \pm 0,15;$	$1,60 \pm 0,15; \mid 53,83 \pm 4,06; \mid$	$50.85 \pm 3.63;$	$2,98 \pm 0,78;$
Модель	(n = 25)	2,89*	1,71	1,25**	1,03	1,12*	0,42	9,95	8,90	1,92
«Острыи	4 cyr	4 cyr $8,08 \pm 0,58$; $5,95 \pm 0,67$;	$5,95 \pm 0,67;$	$2,13 \pm 0,22;$	$7,12 \pm 0,59;$	$4,64 \pm 0,59;$	$2,48 \pm 0,25;$	$62,16\pm3,77;$	$57,21 \pm 3,66;$	$4,95 \pm 0,75;$
пислонефрит»	(n = 30)	1,43**	1,63	0,54*	1,44*	1,46*	0,62*	9,23*	8,34*	1,85*
	5 cyr	5 cyr 8.77 ± 0.74 ;	$5,67 \pm 0,75;$	$3,10 \pm 0,30;$	$9,18 \pm 0,69;$	$6,36 \pm 0,93;$	$2,82 \pm 0,39;$	$54,23 \pm 3,21;$	$50,74 \pm 3,76;$	$3,49 \pm 0,93;$
	(n = 20)	(n=20) 1,81*	1,84*	0,74*	1,71*	2,29*	0,95*	7,86	9,22	2,29*

Примечание. * – достоверность различий с интактными животными по t-критерию Стьюдента, ** – по U-критерию Манна – Уитни при p < 0,05.

сроки исследования были выявлены бактериемия и бактериурия в диагностических титрах. Летальность среди животных опытной группы к 5-м сут эксперимента составляла 23 % (p = 0.042).

На 2-4-е сут от момента индукции пиелонефрита, отмечен рост плотности поверхностного электрического заряда мембраны (ППЭЗМ) лейкоцитов. Установленная на 2-е-3-и сут умеренная корреляция между абсолютным содержанием клеток в циркуляции и их адгезивной способностью, позволяет говорить, что лейкоцитоз, отмеченный нами на 2-е сут эксперимента, обусловлен мобилизацией костно-мозгового и демаргинацией пристеночного пулов зрелых клеток (коэффициент корреляции Спирмена (ρ) = 0,77; 0,58; 0,64 на 2-е, 3-и и 4-е сут соответственно, p < 0.002), а также увеличением количества юных форм гранулоцитов $(\rho = 0.66; 0.52; 0.69 \text{ на 2-е, 3-и и 4-е сут соответст-}$ венно, p < 0.05). Антимикробная защита на 2-4-е сут обеспечивалась за счет усиления активности фагоцитоза (АФ) на фоне снижения его интенсивности (ИФ), и только к 5-м сут возрастали как активность, так и интенсивность фагоцитоза. С 3-х сут увеличивались локомоторная активность лейкоцитов (табл. 1).

Наличие дисфункции эритроцитарных мембран подтверждается увеличением со 2-х сут количества эритроцитарных агрегатов и сорбционной способности эритроцитов.

Начиная со 2-х сут эксперимента, обнаружено достоверное увеличение количества эритроцитарнолейкоцитарных коагрегатов (ЭЛК). На 2-е-3-и сут увеличение обусловлено достоверным ростом больших форм коагрегатов, а к 5-м сут - за счет снижения малых и значительного роста больших форм. Рост количества лейкоцитарно-тромбоцитарных коаграгатов (ЛТК) на 3-и и 4-е сут обусловлен увеличением, как малых, так и больших форм. Интересен тот факт, что образование эритроцитарно-тромбоцитарных коагрегатов (ЭТК) снижается ко 2-м сут эксперимента за счет падения больших форм и достоверно увеличивается к 3-м сут за счет как малых, так и больших форм (табл. 2). Обнаруженная нами на 3-и-5-е сут эксперимента статистически значимая сильная положительная корреляция между сорбционной способностью эритроцитов и количеством межклеточных коагрегатов (индекс корреляции Спирмена 0.83, p = 0.0007) позволяет говорить о возможной роли эндогенной интоксикации в нарушении клеточного взаимодействия в крови за счет нарушения стабильности мембран.

Таким образом, результаты экспериментального исследования позволяют заключить, что одну из ключевых ролей в развитии синдрома системного воспалительного ответа при остром пиелонефрите играет нарушение регуляции процессов клеточно-клеточного взаимодействия.

Во-первых, установлено, что развитие эндогенной интоксикации происходит уже ко 2-м сут

эксперимента и статистически значимо коррелирует во все сроки с абсолютным количеством лейкоцитов в циркуляции ($\rho = 0.84; 0.71; 0.63; 0.59$ и 0,66 соответственно, p < 0,05). Во-вторых, проведенный корреляционный анализ между уровнем лейкоцитоза и функциональной способностью лейкоцитов (адгезия, локомоция, фагоцитоз, генерация активных метаболитов кислорода) позволяет говорить, что усиление функции лейкоцитов, отстает во времени от их количественного увеличения. Значимый прирост функции лейкоцитов отмечается лишь на 4-5-е сут. В-третьих, изменение со 2-х сут функциональной активности клеток крови, ведущее к увеличению их адгезивно-агрегационных свойств, уже к 3-5-м сут приводит к нарушениям процессов клеточного взаимодействия и ухудшению реологических свойств крови.

Выводы

- 1. Развитие экспериментального пиелонефрита со 2-х сут сопровождается формированием синдрома эндогенной интоксикации, что коррелирует с абсолютным количеством лейкоцитов в циркупянии
- 2. Лейкоцитоз на ранних сроках развития острого пиелонефрита обусловлен мобилизацией костно-мозгового и демаргинацией пристеночного пулов зрелых клеток, а также увеличением количества юных форм гранулоцитов.
- 3. Увеличение функциональной способности лейкоцитов (адгезии, локомоции, фагоцитоза, генерации активных метаболитов кислорода) в ходе развития экспериментального пиелонефрита отмечается на 3-и-5-е сут и отстает во времени от количественного увеличения клеток в циркуляции.

Развитие экспериментального пиелонефрита со 2–3-х сут сопровождается изменением плотности поверхностного электрического заряда клеток крови, усилением их адгезивных свойств, что к 4–5-м сут приводит к увеличению образования клеточных коагрегатов в крови и ухудшению гемореологии. Количество межклеточный коагрегатов в ранние сроки развития экспериментального пиелонефрита положительно коррелирует с уровнем эндогенной интоксикации.

Литература

- 1. Голод, Е.А. Повышение уровня активных форм кислорода как одна из причин нарушения метаболизма в клетках почечных канальцев у больных острым и хроническим пиелонефритом / Е.А. Голод, В.И. Кирпатовский // Урология. 2000. \mathbb{N} 1. \mathbb{C} . 59—61.
- 2. Долгушин, И.И. Нейтрофилы и гомеостаз / И.И. Долгушин, О.В. Бухарин. Екатеринбург: Изд-во УрО РАН, 2001. 283 с.
- 3. Иммунологические показатели у больных мочекаменной болезнью и вторичным пиелонефритом / Н.И. Казеко // Урология. 2008. № 1. $C.\ 11-15$.

Проблемы здравоохранения

- 4. Клинические аспекты диагностики и оперативного лечения первичного острого гнойнодеструктивного пиелонефрита / С.М. Алферов // Xирургия. 2008. N2 7. C. 15—19.
- 5. Осиков, М.В. Способ оценки адгезивной способности лейкоцитов / М.В. Осиков, Д.М. Смирнов // II Всерос. университет. науч.-практ. конф. молодых ученых и студентов по медицине: сб. материалов. — Тула: Автограф, 2003. — С. 107—108.
- 6. Смирнов, Д.М. Патофизиология раннего воспаления при остром перитоните и методы его коррекции в эксперименте: автореф. дис. ... канд. мед. наук / Д.М. Смирнов. Челябинск: ЧелГМА, 2008. 24 с.
- 7. Соколова, Х.А. Гипербарическая оксигенация в комплексном лечении острого пиелонефрита: автореф. дис. ... канд. мед. наук / Х.А. Соколова. – Ярославль: ЯГМА, 2009. – 24 с.
- 8. Тогойбаев, А.А. Способ диагностики эндогенной интоксикации / А.А. Тогойбаев // Лаб. дело. 1988. N = 9. C. 22-24.
- 9. Тодоров, Й. Клинические лабораторные исследования в педиатрии / Й. Тодоров. София: Медицина и физкультура, 1968. 1064 с.
- 10. Фрейдлин, И.С. Методы изучения фагоцитирующих клеток при оценке иммунного статуса человека / И.С. Фрейдлин. Л., 1986. 272 с.

- 11. Харамоненко, С.С. Электрофорез клеток крови в норме и патологии / С.С. Харамоненко, А.А. Ракитянская. Минск: Беларусь, 1974. 143 с.
- 12. Эфферентная терапия в комплексном лечении острого гнойного пиелонефрита в раннем послеоперационном периоде / В.Е. Антонова, А.Г. Мартов, А.П. Данилков и др. // Урология. 2007. N = 4. C.94-99.
- 13. Krieger, J.N. Urinary tract infection: what's new? / J.N. Krieger // J. Urol. 2002. Vol. 168. P. 2351–2358.
- 14. Nieuwkoop, C. Prospective cohort study of acute pyelonephritis in adults: Safety of triage towards home based oral antimicrobial treatment / C. Nieuwkoop, J.W. Wout, I.C. Spelt // J. Infect. − 2010. Vol. 60, № 4. P. 114–121.
- 15. Pavlidis, T.E. Cellular changes in association with defense mechanisms in intraabdominal sepsis / T.E. Pavlidis // Minerva Chir. -2003. -Vol. 58, $N \ge 6. -P. 777-781$.
- 16. Reinhart, K. Markers of endothelial damage in organ dysfunction and sepsis / K. Reinhart, O. Bayer, F. Brunkhorst // Crit. Care Med. 2002. Vol. 30, 5 supl. P. 302–313.
- 17. Tenke, P. The role of biofilm infection in urology / P. Tenke, B. Kovacs, M. Jackel // World J. Urol. 2006. Vol. 24. P. 13–20.

Поступила в редакцию 10 августа 2012 г.