ПРОБЛЕМЫ ПОДГОТОВКИ ОЛИМПИЙСКОГО РЕЗЕРВА В ХОККЕЕ С ШАЙБОЙ (ФИЗИОЛОГИЧЕСКИЕ, ПСИХОЛОГО-ПЕДАГОГИЧЕСКИЕ АСПЕКТЫ СОСТОЯНИЯ, СПОРТИВНОГО СОВЕРШЕНСТВОВАНИЯ, ВОССТАНОВЛЕНИЯ И РЕЗУЛЬТАТИВНОСТИ)

А.П. Исаев, В.И. Ляпкало, А.В. Ненашева ЮУрГУ, г. Челябинск

В современном хоккее с шайбой не достает интегративных данных о подготовленности, психофизиологической надежности, нейромоторных характеристик, системных и межличностных коммуникаций. Попытке заполнения этого вакуума у хоккеистов олимпийского резерва посвящена данная статья.

Ключевые слова: интегративная деятельность, прогрессивная тренировка, состояние, восстановление, реабилитация, образование, отбор, спорт олимпийского резерва, адаптаспособность, межличностные отношения, стресс-факторы, игровое амплуа, фагоцитарная активность лейкоцитов.

После XXI олимпиады в Ванкувере у отдельных государственных чиновников появилось некорректное суждение о том, что высших результатов в спорте добивается один спортсмен. Ему хвала и почести. Однако путь к олимпийскому пьедесталу (10–12 лет) начинается со спортивного отбора и многолетней работы с олимпийскими резервами тренеров, врачей, массажистов, реабилитологов, психологов, диетологов, группы работников, обеспечивающих научно-методическое обеспечение, менеджеров спорта, специалистов компьютерных технологий.

Концептуальный подход и прогнозирование системы тренировки, восстановления, реабилитации с учетом региональных, экологических особенностей рождения и проживания позволяют спортсмену в интегративной деятельности усилиями указанных специалистов добиваться высоких результатов в спорте высших достижений. Выпадение одного из звеньев не принесет желаемых результатов в соревнованиях.

Действительно, современные спортивные достижения требуют колоссальных затрат энергии, напряжения психофизиологического потенциала, умения использовать резервы при предельной мобилизации организма в экстремальных условиях соревнований.

Исключительно запущенной проблемой в РФ является развитие детско-юношеского и студенческого спорта, подготовка резервов большого спорта. Мизерна заработная плата (4–5 тыс. руб.) спортивных педагогов этого звена, работающих в праздник и выходные дни. Без этого звена тренеров не будет тренеров высшей категории, заслуженных тренеров, так как в большинстве случаев молодые педагоги передают перспективных юных спортсменов в центры олимпийской подготовки.

Опыт 50 лет работы в физкультурном образо-

вании показывает, что отбор способных в двигательной активности абитуриентов становится из года в год все меньше. Если при поступлении в институты физической культуры 30–40 лет назад был конкурс 5–10 человек на одно место, то сегодня конкурса почти нет и в редких специализациях составляет 2 человека на место. Педагоги осуществляют набор, а об отборе речи уже не ведется. Ранее в профильные вузы принимались абитуриенты минимум второго разряда на педагогические факультеты, то сегодня этот вакуум заполняют абитуриенты без разрядов и в лучшем случае с 3-м разрядом. Аналогичная проблема возникает при наборе в детско-юношеском спорте в ряде видов спорта.

Глубоко изучая проблемы студенческого спорта, и в частности хоккея с шайбой, нами выявлено, что студенты-спортсмены отличаются от профессионалов по физической работоспособности и следующим психологическим характеристикам: вектор мотиваций и потребностей, формирование ценностных ориентаций, уровень тревожности, агрессивности при разрешении конфликтных ситуаций [2]. Проблемными остаются причины травматизма в хоккее, а также подведение игрока звеньев и команды в целом к социально-значимым соревнованиям. Последнее актуализируется с психофизиологических и управленческих позиций в связи с разгромным счетом сборной РФ в матче с канадцами на Олимпиаде в Ванкувере. В работе показаны возможности повышения, улучшения ряда обследуемых значений и их интеграции в системе педагогического эксперимента прогрессивной тренировки, восстановления и реабилитации. Установленный процесс подготовки адекватен фазам адаптации: поисковой, развивающей, формирующей, стабилизирующей, и идет прогрессивно при соблюдении пространственно-временных и

силовых факторов. Отмечается синхронность целенаправлений деятельности по формированию ценностных ориентаций, рост адаптаспособности, их фазные изменения в векторе общения, успешность игровой деятельности команды. Это происходит на фоне психофизиологического напряжения, высокого уровня работоспособности и мощности энергообеспечения в референтных границах. Положительные изменения наблюдались в абсолютной и относительной результативности при незначительном увеличении штрафного времени. В ценностных ориентациях индивидуально-личностного характера наиболее существенную роль играют личная безопасность, повышение физической кондинии, сохранение и укрепление психологического и физического состояния. Среди предпочтений выделяются следующие: помощь партнерам по команде в достижении успеха, профессиональное выполнение обязанностей по отношению к команде, лидерские притязания с целью успешной соревновательной деятельности.

Применение ПМТ и БОС, идеомоторной тренировки сопровождалось повышением коммуникативных интеграций в симватности действий, надежности игроков в сложных экстремальных ситуациях игровой деятельности, снятием или успешным преодолением конфликтных ситуаций. Агрессивность игроков повышалась, симватно увеличивалась активность индикаторов системы крови и гормонального статуса организма по фазам адаптации в формирующем эксперименте.

Наряду с психолого-педагогическим исследованием проводились комплексные медико-биологические исследования и осуществлялся психофизиологический контроль с хоккеистами студентами.

Предварительно был проведен анализ распределения нагрузок (ч) на этапах годового микро-

цикла (В.И. Ляпкало, 2007), а также выявлена патология хоккеистов по нозологическим формам. При определении воздействия нагрузок пользовались шкалой интенсивности с учетом основных критериев. С точки зрения построения техникотактического занятия в хоккее с шайбой решались задачи восстановления, реабилитации с учетом дней нетрудоспособности. Рассмотрено распределение числа травм в зависимости от числа игр и количества часов. Рассчитаны зависимости травматизма от возраста, спортивного стажа, специализации, в том числе по периодам подготовки. По локализации наибольшее число травм. %: в лучезапястном суставе – 14, надплечье – 13, плечевом суставе – 12, коленном суставе – 11, локтевом суставе -10, голеностопном -9, туловище -8, плече -7, стопе -6, предплечье -5, голени -4, кисти -3, бедре – 2, голове и шеи – 1. Чаще всего травмируются нападающие (57 %), реже защитники (38 %) и еще реже вратари (5 %). Рассмотрен характер травм хоккеистов разной специализации. Процент повреждений связок и мышц в общем количестве травм у вратарей в два раза выше, чем у нападающих и защитников. Количество травм наибольшее у нападающих (1223), защитников (818), вратарей (95). Произведено распределение травм по периодам подготовки и установлена зависимость от степени вестибулярной устойчивости у хоккеистов различной специализации. Проведено распределение спортивных повреждений и количества спортсменов в группах вестибулоустойчивости в годовом макроцикле (табл. 1). Установлено большое количество травм в соревновательном периоде.

В табл. 2 представлено распределение спортивных повреждений по степени вестибулярной устойчивости, игровой специализации, периодам подготовки и степени тяжести за три года.

Таблица 1 Распределение числа травм в зависимости от степени вестибулярной устойчивости у хоккеистов различной специализации

Игровая специализация	Кол-во спорт- сменов всего	Вестибуло- устойчивые		Скрытая в неустой	•	Вестибуло- неустойчивые		
		Кол-во спорт- сменов	Травмы	Кол-во спорт- сменов	Травмы	Кол-во спорт- сменов	Травмы	
Нападающие	13	4	39	6	79	3	37	
Защитники	9	2	7	5	57	2	26	
Вратари	2	-		2	9		_	

Таблица 2 Распределение спортивных повреждений и количество спортсменов в группах вестибулоустойчивости в годовом макроцикле

Группа вестибулярной устойчивости	Вестибуло- устойчивые	Со скрытой вестибулярной неустойчивостью	Вестибуло- неустойчивые	Bcero	
Количество спортсменов	4	12	3	19	
Количество повреждений	37	218	69	384	

Интегративная физиология

Выявлены три группы вестибулярной устойчивости хоккеистов: 9 составили группу вестибулоустойчивых, 19 — со скрытой вестибулярной устойчивостью и 8 — вестибулоустойчивых. Установлено, что спортивный травматизм в хоккее на льду зависит от степени вестибулярной устойчивости спортсменов различного игрового амплуа (табл. 3).

Так, в 1-м соревновательном периоде наибольшее количество травм (35,53 %), соревновательный — 1-й игровой (29,58 %), соревновательный — 2-й игровой (20,58 %). В соревновательном периоде количество травм составляет 45 % всех травм (1–3). Тяжелые травмы доминировали у вратарей (3,1 %), затем следовали нападающие (1,0 %) и защитники (0,3 %).

Для хоккеистов олимпийского резерва по эта-

пам представлена вариативность по зонам мощности: аэробная (50–70 %), аэробная алактатная (20–40 %), аэробно-анаэробная (10–20 %). Определены % развития быстроты (35–65 %), скоростной выносливости (35–65 %), СФП (5–15 мин), взрывной силы (35–80 %), скоростно-силовых качеств (20–65 %). Средства варьируют по этапам в зависимости от задач.

Во втором соревновательном периоде структура СФП представлена в табл. 4.

По микроциклам процент поддержания быстроты остался таким же, как и в первом соревновательном периоде. Однако вариативность распределения нагрузки на скорость последовательно повышалась на 1 и 2 этапах, снижалось перед играми. Специальная выносливость была менее

Таблица 3

Распределение спортивных повреждений по степени вестибулярной устойчивости, по игровой специализации, по периодам подготовки, по степени тяжести за три года

Показатель	Вестибулоустойчивые		Со скрытой вестибулярной неустойчивостью		Вестибулонеустойчивые			
	Травмы							
	Кол-во	%	Кол-во	%	Кол-во	%		
Игровая специализация:								
нападающие	37	9,63	142	36.98	48	12,5		
защитники	29	7,55	117	30,47	21	5.47		
вратари	8	2,08	19	4,95		_		
Подготовительный период:								
ОП-этап	7	1,82	19	4,95				
СП-этап	21	5,47	52	13,54		_		
Соревноват. период	9	2,34	138	35,94	69	17,97		
Переходный период	_	_	69	17,97		_		
Степень тяжести:								
легкая	37	9,63	259	67,45	24	6,25		
средняя	_	_	18	4,69	43	11,2		
тяжелая		_	1	0,26	2	0,52		

Таблица 4 Структура специальной физической подготовки во втором соревновательном периоде

	1 э	гап	2 этап			
Показатель		Микр	оцикл			
:	1-2-й 3-4-й		1-2-й	3–4-й		
	Двигательны	е способности				
Скорость, %	35	55	65	35		
Выносливость, %	65	45	35	65		
	Специальная си:	повая подготовк	a			
	БК 3.00-3.10	. 1x1, 3x2c/x	Д	ДИ		
Время повторений, с		5–7	30–40	40–45		
Время отдыха		30–40 с	2,0-2,5 мин	1,5–2,0 с		
Время работы, мин		5–10	10–15	10–15		
	Атлетическа	я подготовка				
Взрывная сила, %	40	60	50	65		
Скоростная выносливость, %	60	40	30	55		
	Зоны мо	ощности				
АП, %	55	60	50	65		
Аналаэр., %	35	30	40	25		
Аэран., %	10	10	10	10		

Примечание. БК – бег по кругу, ДИ – двухсторонние игры.

вариативной, несколько снижалась в середине этапов. Стабилизировалось время повторений (с), время работы (мин), время отдыха было, как и в первом периоде. Относительно стабилизировалась взрывная сила по микроциклам подготовки. Существенно повысились скоростно-силовые качества. Несколько повысились нагрузки в анаэробноаэробной алактатной зоне, полностью стабилизировались в аэробно-анаэробной и незначительно в аэробной.

Диагностика психофизиологического и функционального состояния позволяла анализировать ланные и своевременно вносить коррективы, изменять отношение в команде. Результаты ортокардиоинтервалографии иллюстрированы в табл. 5.

Полученные значения позволяют корректировать функциональное состояние ССС варьированием тренировочных воздействий и рекреации, а в группе с низкими баллами - ОКИГ кардиологической помощи. Резервы частоты дыхания хоккеистов колебались от 17,5 ± 0,49 дыхательных циклов в состоянии относительного покоя до 68.70 ± ± 2,56 при максимальной вентиляции легких, а МОД от $16,80 \pm 0,74$ до 115,18 л/мин. Дыхательный объем при этом варьировал от 0,87 ± 0,035 до 1.85 ± 0.12 л. Все изучаемые показатели функции внешнего дыхания (ФВД) находились в референтных границах от должных. Различия в значениях ФВД наблюдались при сравнении показателей у хоккеистов атаки и защиты (Р < 0,05-0,01). Из числа обследуемых хоккеистов (n = 36) по данным индекса состояния бронхиальной проходимости 15 % находилось в диапазоне условной нормы. Необходимо также отметить, что в соревновательном периоде процент анаэробно-аэробных и анаэробных алактатных значений энергообеспечения доминирует над окислительным фосфорилированием, особенно во 2-м соревновательном периоде [1].

С целью модернизации процесса подготовки хоккеистов тренировки на равнине на этапе непосредственной подготовки к соревнованиям сочетались с выездом на 2 недели в среднегорье. Результаты представлены в табл. 6.

Установлено, что показатели лейкограммы в мезоциклах подготовки к главным играм у хоккеистов на равнине характеризовались фазой активации.

Пребывание в среднегорье вызывало изменение адаптационно-компенсаторного напряжения векторно к повышенной активации. Выявлены особенности энергообеспечения по гемоглобину, эритроцитам в зависимости от игрового амплуа. Варьирование объемом и интенсивностью нагрузок позволяло спортсменам приобрести запас кислородтранспортной функции за счет эритропоэтина, объема циркулирующей плазмы, обеспечивающих готовность к выполнению субмаксимальных воздействий. С приближением социально-значимых соревнований повышались возможности адаптации к стресс-факторам, о чем мы судили по сни-

Хоккеисты (КМС, МС) с высокой (25-40, n = 37), средней (10-20, n = 18) и низкой (менее 10, n = 5) балльной оценкой ОКИГ

Статистики Mo, c ΔX , c ДА, с КСУ, у.е. КПВ, у.е. ИН, у.е. Баллы, у.е. 0.98 0,28 0,21 2.94 1.45 28,54 Μ± 61.02 0,09 0,57 0,01 0,02 0,01 0,20 4,65 m 0,88 0,17 0,16 2,36 1,36 76,20 Μ± 16,66 M 0.02 0.02 0.04 0.14 0,23 1,00 5,72 $P_{\underline{\scriptscriptstyle B-C}}$ > 0.05> 0,05 > 0.05> 0,05 > 0.05> 0.001 $M\pm$ 0.80 0,12 0,15 2,24 0,14 3,80 89,65 0,03 0,025 0,01 0,25 0,10 1,12 5,41 m < 0.01< 0,05 < 0.01 < 0.05 < 0.01 < 0.001 P_{B-H}

Изменение функциональной активности лейкоцитов у хоккеистов

Таблица 6

Таблица 5

	До нагрузки				После нагрузки				
Показатель	n	M	% вари-	± m	n	M	% вари-	± m	P
			ации				ации		
Индекс Райта	24	2,70	32,22	0,21	14	1,89	30,69	0,16	0,001
Индекс Гамбургера	24	73,92	5,95	1,20	14	55,64	13,71	0,16	0,001
Завершенность	24	58,10	13,22	2,13	14	47,10	19,75	2,50	0,005
фагоцитоза									
Гликоген	24	2,46	13,41	0,09	14	2,46	13,01	0,08	
Липиды	24	2,47	12,96	0,08	14	2,19	14,16	0,08	0,001
Пероксидаза	24	2,06	37,86	0,21	14	1,93	34,72	0,18	0,11
Щелочная фосфатаза	24	1,91	36,65	0,19	14	2,14	29,91	0,17	0,01
ДНК	24	2,15	16,28	0,09	14	2,33	18,03	0,11	0,001
РНК	24	0,053	20,75	0,003	14	0,039	17,95	0,002	0,03

Интегративная физиология

жению (P < 0,05-0,01) количества эозинофилов, являющихся индикаторами глюкокортикоидов. Выявлены различия гематологических показателей у игроков атаки и защиты.

Нами наблюдалось усиление фагоцитарной способности нейтрофилов на фоне хорошего физического состояния, сочетаемого как с высоким, так и низким содержанием ферментов (периоксидазы, щелочной фосфатазы) и ДНК. Это зависит от фаз адаптации, и в этом состоянии находились 21,4 % обследуемых, а у 78,6 % отмечалось перенапряжение и сдвиги окислительно-восстановительных процессов в клетках, детерминированных снижением количества гликогена, - одного из источников внутриклеточной энергии нейтрофилов. Жизнедеятельность клетки связана с ферментными системами, разрушающими перекись водорода и принимающими активное участие в синтезе фосфорных соединений, в обмене нуклеиновых кислот и липидном обмене. Под воздействием нагрузок происходит процесс липолиза - расщепление липидов с образованием жирных кислот. Затем происходит бетаокисление жирных кислот, одним из предметов которого является ацетил КоА, и кетогенез – распад ацетил КоА с образованием кетоновых тел. Далее идет катаболизм холестерина, происходящий в печени и приводящий к образованию желчных кислот. Окончательные продукты распада липидов выводятся из организма в форме солей жирных кислот нейтральных стероидов и кетоновых тел. Нейтрофильный лейкоцит под влиянием нагрузок соревновательных периодов теряет какоето количество энергетически важных веществ, выполняя функцию безопасности и сохранности организма.

Угнетение фагоцитарной активности лейкоцитов в условиях напряженной тренировочной и игровой деятельности связано с адаптивно-компенсаторными системообразующими звеньями,

что несомненно сказывается на защитной функции лейкоцитов. Перенапряжение и срыв адаптации вследствие истощающих воздействий, психофизиологических факторов приводят к сдвигам в механизмах регуляции, снижению скорости синтеза и окисления липидов. Нейромоторная система определяет уровень регуляторных возможностей организма. Поддержание гомеостаза хоккеистов в соревновательном периоде детерминировано смешанными и анаэробно-алактатными механизмами адаптивно-компенсаторных реакций. В моделях произвольного расслабления и напряжения значения ЭНМГ классифицировались по 1-му типу. Было выявлено доминантное значение ключевых мышц кисти, определяющих спортивную результативность. Наибольшие различия в максимальной амплитуде ЭНМГ в моделях напряжения и расслабления были соответственно в мышцах верхних конечностей, бедра и голени. В порядке ранжирования изучаемые показатели максимальной амплитуды располагались: m. Biceps brachia, Triceps brachia, Vastus medialis, Latissimus dorsi.

Таким образом, интегративный подход позволяет выявить сильные и слабые звенья в системе подготовки, психофизиологической надежности, параметрах энергообеспечения и иммунологической реактивности и резистентности. Остаются еще нерешенными многие значимые проблемы психолого-педагогического, спортивно-медицинского аспекта в спорте олимпийского резерва.

Литература

- 1. Адаптация человека к спортивной деятельности / А.П. Исаев, С.А. Личагина, Р.У. Гаттаров и др. Ростов на/Д.: Изд-во РГПУ, 2004. 236 с.
- 2. Базаров, В.Г. Электронистагмография в условиях лор-стационара / В.Г. Базаров // Журнал ушных, носовых и горловых болезней. 1977. $N \supseteq 6$. C. 69—73.

Поступила в редакцию 23 февраля 2010 г.