ВЛИЯНИЕ ПРОГЕСТЕРОНА, СВОБОДНОГО ЭСТРИОЛА НА ИММУНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ У ЖЕНЩИН С БРОНХИАЛЬНОЙ АСТМОЙ В ПЕРИОД ГЕСТАЦИИ

Н.А. Студнева, Л.Ф. Телешева ЧелГМА, г. Челябинск

Нами было обследовано 83 женщины, страдающих бронхиальной астмой легкой и средней степени тяжести, в возрасте 19–34 года, продолжительностью заболевания в среднем 10.3 ± 0.3 лет. Им проводилось комплексное обследование с применением общеклинических, иммунологических и функциональных методов исследования, определялся уровень прогестерона и свободного эстриола в различные сроки гестации.

Проведенное исследование показало, что нарушение баланса в системе прогестерон – свободный эстриол является одним из определяющих факторов риска утяжеления течения БА в период беременности.

Ключевые слова: бронхиальная астма, беременность.

Бронхиальная астма (БА) представляет собой серьезное заболевание легких, претендующее стать в третьем тысячелетии одним из основных по частоте возникновения после сердечнососудистой патологии [8, 10]. Астма является серьезной проблемой для здравоохранения во многих странах мира, поражает людей всех возрастов, может носить тяжелый характер и подчас приводит к летальному исходу [6]. Глобальному распространению БА способствует развитие цивилизации, накопление токсических продуктов производства и жизнедеятельности человека, возросшая антигенная нагрузка и генетические аберрации, негативные социально-экономические тенденции [13, 18, 16, 22]. Бронхиальная астма дебютирует преимущественно в молодом возрасте, этим объясняется ее высокая частота среди женщин репродуктивного возраста. В России ежегодно рожают 15-60 тыс. женщин, страдающих бронхиальной астмой [9, 20]. Изучение вопроса взаимного влияния беременности и бронхиальной астмы остается актуальным, хотя по названной проблеме опубликовано немало работ. Однако многогранность патогенетических нарушений при БА, определяющих высокую частоту акушерской и перинатальной патологии, обусловливает необходимость выявления новых подходов к обследованию и лечению беременных с БА [7]. Существующие точки зрения на патогенетические механизмы взаимного отягощения физиологического процесса (беременность) и патологического состояния (БА) часто противоречивы, что само по себе требует дополнительного изучения на большом числе наблюдений с применением современных методов исследования [5, 20].

Регуляция иммунологических функций эндокринной системой в настоящее время считается доказанной. Специфические рецепторы к нейромедиаторам, половым стероидным гормонам и глюкокортикоидам выявлены на Т- и В-лимфоцитах, моноцитах, полинуклеарных клетках, что обеспечивает тесные взаимодействия иммунной и эндокринной систем [3]. Во время беременности, присутствуя в крови матери в значительно более высоких концентрациях, чем вне беременности, стероидные гормоны индуцируют целый ряд гестационных изменений в иммунной системе [15].

Ряд работ посвящено влиянию изменений уровня прогестерона и свободного эстриола, связанных с гестационным процессом, на иммунную систему беременных женщин, страдающих бронхиальной астмой, и в целом их влияние на течение заболевания [3, 7, 8, 10, 22]. Доказано позитивное воздействие повышенного уровня прогестерона на течение бронхиальной астмы, который обладает сродством к β2-рецепторам и, активируя их, оказывает расслабляющее действие на тонус гладких мышц, а также способствует синтезу и секреции простагландина Е2, который обеспечивает бронходилатирующий эффект, наблюдаемый при физиологически протекающей беременности [4, 12]. Прогестерон обладает иммуносупрессивной и противовоспалительной активностью [11, 16]. Помимо блокирования Т-клеточного созревания в тимусе, гормон подавляет пролиферацию лимфоцитов, стимулированных митогенами и аллогенными клетками [16]. Прогестерон угнетает также реакции клеточной цитотоксичности, меняет Th1/Th2 баланс: он усиливает формирование Th2-клеток, продуцирующих IL10, и подавляет развитие Th1лимфоцитов (возможно через IL10, который ингибирует синтез IL12 антигенпрезентирующими клетками) [19]. Таким образом, во время беременности прогестерон выступает в роли естественного иммунодепрессанта: подавляет развитие Т-лимфоцитов, угнетает их пролиферативный ответ, блокирует реакции клеточной цитотоксичности [15].

Противоположное прогестерону действие оказывают эстрогены, которые обладают бронхоконстрикторным и проаллергенным действием. Предполагают, что одним из основных механизмов действия эстрогенов является активация α-рецепторов гладкой мускулатуры [4]. Эстрогены также ингибируют активность холинэстеразы и повышают уровень ацетилхолина, оказывают стимулирующее действие на бокаловидные клетки и вызывают гипертрофию последних, усиливают высвобождение гистамина и других биологически активных веществ из эозинофилов и базофилов, стимулируют синтез и секрецию простагландина $F_2\alpha$ [13], оказывающего бронхоконстрикторное действие, повышают связывающую способность транскортина, являющегося общим транспортным белком и для гидрокортизона, и для прогестерона [2]. Во время беременности увеличивается скорость образования иммунных комплексов [16]. При патологии беременности в тех случаях, когда концентрация эстриола находится выше нормы, ослабление клиренса ЦИК может внести дополнительное отягощение в течение бронхиальной астмы [19].

ническим проявлениям течения заболевания: А – улучшение или стабильное течение (50 случаев), Б – ухудшение (33 случая наблюдений).

В результате проведенного исследования было установлено, что у женщин, страдающих БА и имеющих низкий уровень прогестерона в период гестации, в 2 раза чаще возникало обострение БА, в отличие от беременных с нормальным или повышенным уровнем прогестерона; и, наоборот - у беременных с повышенным или нормальным уровнем прогестерона крови в 7 раз реже имело место обострение заболевания, чем у женщин со сниженным уровнем прогестерона. У беременных с повышенным уровнем свободного эстриола, наоборот, обострение БА возникало в 1,5 раза чаще, чем у беременных с нормальным уровнем свободного эстриола. У беременных с нормальным уровнем свободного эстриола неконтролируемое течение БА фиксировалось в 11 раз реже, чем у женщин с повышенным уровнем свободного эстриола в крови (табл. 1).

При проведении исследования иммунологических показателей у беременных было выявлено,

Таблица 1

Течение БА у беременных при повышенном и пониженном уровнях прогестерона и свободного эстриола

Течение бронхиальной астмы	Уровень прогестерона ниже нормы	Уровень прогестерона в пределах нормы и выше	p	Уровень эстриола в пределах нормы	Уровень эстриола выше нормы	p
Ухудшение	23	10	< 0,0001	13	20	< 0,0001
Улучшение или стабильное течение	6	44		46	4	
Bcero	29	54		59	24	

Примечание. В табл. 1–3 достоверное отличие считается значимым при p < 0,05. Статистическая значимость различия оценивалась по критерию Манна–Уитни.

Нарушение равновесия эстрогены-прогестерон предрасполагает к развитию аллергических реакций и бронхоспазма в период беременности [13]. Именно снижением содержания прогестерона, резким увеличением продукции эстрогенов объясняется ухудшение течения БА в последнюю декаду перед родами или несколько раньше [14].

Целью нашего исследования было установить влияние прогестерона и свободного эстриола на иммунологические показатели у женщин с бронхиальной астмой в период гестации.

Нами было обследовано 83 женщины, страдающих бронхиальной астмой с легкой и средней степенью тяжести, в возрасте 19-34 года, с продолжительностью заболевания в среднем 10.3 ± 0.3 лет. Им проводилось комплексное обследование с применением общеклинических, функциональных методов исследования, определялся уровень прогестерона и свободного эстриола в различные сроки гестации. Было выделено 2 группы беременных женщин, страдающих БА, объединенные по кли-

что в крови у женщин с повышенным уровнем свободного эстриола, в отличие от женщин с нормальным уровнем эстриола, достоверно повышалось количество лейкоцитов и абсолютное количество моноцитов при недостаточной их фагоцитарной активности, способствующих развитию или обострению хронических инфекционных процессов. Наблюдалось увеличение уровня циркулирующих иммунных комплексов (ЦИК). При проведении CD-типирования выявлено повышение уровня CD11b, CD56, CD95, что также косвенно свидетельствует о супрессии клеточного иммунитета, которая способствует хронизации инфекционных процессов и воспаления (табл. 2).

При изучении иммунологических показателей у беременных с бронхиальной астмой с повышенным или пониженным уровнем прогестерона, было выявлено: при снижении уровня прогестерона нарастает лейкоцитоз с палочкоядерным сдвигом в лейкоформуле, увеличивается содержание нейтрофилов и моноцитов в периферической крови.

Таблица 2

Иммунологические показатели у беременных при повышенном или пониженном уровнях свободного эстриола

Исследуемые по		Уровень эстриола выше нормы,	Уровень эстриола в пределах нормы и ниже,	p p	
единицы изм	ерения	n = 19	n = 19		
Лейкоциты, х 10 ⁹ г/л		$9,38 \pm 0,47$	$8,06 \pm 0,38$	< 0,05	
Эозинофилы, %		$3,63 \pm 0,76$	$3,07 \pm 0,47$	> 0,05	
Палочкоядерные нейтро	р илы, %	$3,42 \pm 0,62$	$3,29 \pm 0,51$	> 0,05	
Сегментоядерные нейтро	офилы, %	$68,8 \pm 1,6$	$67,7 \pm 1,3$	> 0,05	
Моноциты, %		$8,25 \pm 0,93$	$7,24 \pm 0,45$	> 0,05	
Лимфоциты, %		$15,88 \pm 0,92$	$18,73 \pm 1,03$	> 0,05	
Относительное содержан х 10 ⁹ г/л	ие нейтрофилов,	$72,4 \pm 1,5$	$71,0 \pm 1,2$	> 0,05	
Абсолютное содержание моноцитов, х 10 ⁹ г/л		0.81 ± 0.11	$0,58 \pm 0,04$	< 0,05	
CD3, %	CD3, %		$38,8 \pm 1,7$	> 0,05	
CD4, %	:	$27,4 \pm 2,2$	$26,9 \pm 1,2$	> 0,05	
CD8, %		$22,3 \pm 2,1$	$21,2 \pm 0,9$	> 0,05	
СD4/8, усл. ед.		$1,31 \pm 0,07$	$1,29 \pm 0,04$	> 0,05	
CD16, %		$15,26 \pm 1,04$	$15,41 \pm 0,82$	> 0,05	
CD56, %		16,05±1,97	$14,10 \pm 0,65$	> 0,05	
CD95, %		$17,74 \pm 1,78$	$15,96 \pm 0,98$	> 0,05	
HLA-DR, %		$15,68 \pm 1,46$	$15,36 \pm 0,80$	> 0,05	
CD20, %		$15,96 \pm 1,50$	$17,64 \pm 1,41$	> 0,05	
CD25, %		$12,77 \pm 1,20$	$11,98 \pm 0,75$	> 0,05	
Фагоцитоз нейтрофилов	Активность, %	46.8 ± 2.9	$48,6 \pm 1,8$	> 0,05	
НСТ-тест нейтрофилов спонтанный	Активность, %	$28,5 \pm 3,6$	$23,3 \pm 1,7$	> 0,05	
НСТ-тест нейтрофилов индуцированный	Активность, %	$36,1 \pm 2,5$	$39,5 \pm 2,2$	> 0,05	
Лизосомальная активность нейтрофилов, усл. ед.		$243,8 \pm 15,8$	261,2 ± 10,4	> 0,05	
ЦИК, усл. ед.		$93,6 \pm 8,1$	$64,4 \pm 4,8$	< 0,005	
СН50, усл. ед.		$59,3 \pm 1,6$	$58,3 \pm 1,2$	> 0,05	
ИГ А, г/л		$1,53 \pm 0,12$	$1,70 \pm 0,09$	> 0,05	
ИГ М, г/л		$1,35 \pm 0,09$	$1,21 \pm 0,05$	> 0,05	
ИГ G, г/л		$9,34 \pm 0,44$	$9,40 \pm 0,28$	> 0,05	

Значительно снижается фагоцитарная активность нейтрофилов, увеличивается количество ЦИК, что свидетельствует о нарастании активности воспалительной реакции, что также может внести свой неблагоприятный вклад в течение БА и хронизацию воспалительного процесса. У женщин с повышенным уровнем прогестерона отмечено улучшение течения БА за счет прямого влияния прогестерона на дыхательную систему беременной и супрессорного влияния на систему иммунитета, заключающегося в нормализации лейкоформулы периферической крови, фагоцитарной активности нейтрофилов и, как следствие, снижение уровня ЦИК (табл. 3).

Таким образом, проводимое нами исследование показало, что нарушение баланса в системе прогестерон – свободный эстриол является одним из определяющих факторов риска утяжеления течения БА в период беременности и часто сопро-

вождается клиническими проявлениями угрозы прерывания беременности, выраженным дисбалансом в иммунной системе беременной с БА, приводящим к усугублению воспаления, которое является основой патогенеза бронхиальной астмы. Проведенная своевременная адекватная коррекция гормонального статуса приводит не только к купированию признаков угрозы прерывания беременности, но и к клиническому улучшению течения бронхиальной астмы. На основании литературных данных, полученных результатов проведенного исследования, предложено проведение исследования гормонального статуса женщин, страдающих БА на протяжении всего периода гестации с возможной последующей коррекцией. Адекватный контроль над течением БА при беременности позволяет женщинам выносить настоящую беременность, избежать осложнений и родить здорового ребенка.

Таблица 3 Иммунологические показатели у беременных

		Уровень	Уровень		
Показатель	,	прогестерона	прогестерона	n	
единицы измер	ения	ниже нормы,	в пределах нормы	p	
		n = 28	и выше, n = 51		
Лейкоциты, х 10 ⁹ г/л		$9,44 \pm 0,57$	$7,92 \pm 0,34$	< 0,05	
Эозинофилы, %		$2,64 \pm 0,60$	$3,57 \pm 0,52$	> 0,05	
Палочкоядерные нейтрофилы	, %	$4,46 \pm 0,85$	$2,71 \pm 0,38$	< 0,05	
Сегментоядерные нейтрофилы, %		$68,6 \pm 1,5$	67,6 ± 1,4	> 0,05	
Моноциты, %		$7,86 \pm 0,67$	$7,38 \pm 0,55$	> 0,05	
Лимфоциты, %		16,43 ± 1,09	18,65 ± 1,05	> 0,05	
Относительное содержание нейтрофилов,		73.1 ± 1.3	70.5 ± 1.3	> 0,05	
х 10 ⁹ г/л			70,5 ± 1,5	> 0,03	
Абсолютное содержание моно	оцитов, х 10 ⁹ г/л	$1,08 \pm 0,34$	$0,59 \pm 0,05$	= 0,067	
CD3, %		$38,8 \pm 2,4$	$38,8 \pm 1,9$	> 0,05	
CD4, %		$26,7 \pm 1,8$	$27,2 \pm 1,4$	> 0,05	
CD8, %		21.8 ± 1.6	21,4±1,1	> 0,05	
СD4/8, усл. ед.		$1,29 \pm 0,07$	$1,30 \pm 0,05$	> 0,05	
CD16, %		$14,37 \pm 1,00$	$15,94 \pm 0,83$	> 0,05	
CD56, %		$15,00 \pm 1,63$	$14,52 \pm 0,74$	> 0,05	
CD95, %	:	$16,07 \pm 1,38$	$16,77 \pm 1,14$	> 0,05	
HLA-DR, %		$13,85 \pm 1,05$	$16,37 \pm 0,92$	= 0,08	
CD20, %		$17,89 \pm 2,55$	$16,65 \pm 0,85$	> 0,05	
CD25, %		$11,50 \pm 0,91$	$12,69 \pm 0,86$	> 0,05	
Фагоцитоз нейтрофилов	Активность, %	$45,0 \pm 2,5$	49.8 ± 1.9	> 0,05	
НСТ-тест нейтрофилов	A remove a conv. Of	242 - 20	25.2 . 1.0	> 0.05	
спонтанный	Активность, %	$24,2 \pm 3,0$	$25,2 \pm 1,9$	> 0,05	
НСТ-тест нейтрофилов	Активность, %	37.4 ± 2.6	$39,0 \pm 2,2$	> 0,05	
индуцированный	Активность, %	$37,4 \pm 2,0$	$39,0 \pm 2,2$	> 0,03	
Лизосомальная активность ней	ітрофилов, усл. ед.	$250,1 \pm 16,4$	$252,0 \pm 11,3$	> 0,05	
ЦИК, усл. ед.		$80,4 \pm 7,0$	$69,7 \pm 5,6$	> 0,05	
СН50, усл. ед.		$60,3 \pm 1,6$	$57,7 \pm 1,2$	> 0,05	
ИГ А, г/л		$1,66 \pm 0,13$	$1,64 \pm 0,09$	> 0,05	
ИГ М, г/л		$1,34 \pm 0,09$	$1,20 \pm 0,05$	> 0,05	
ИГ G, г/л		$9,19 \pm 0,42$	19 ± 0.42 9.48 ± 0.28		

с повышенным или пониженным уровнями прогестерона

Литература

- 1. Альфа-фетопротеин / В.А. Черешнев, С.Ю. Родионов, В.А. Черкасов и др. // Екатерин-бург: УрО РАН, 2004. 376 с.
- 2. Ведение беременности и родов у больных с хроническими заболеваниями легких / И.О. Шугинин, А.А. Ефанов, Н.В. Бирюкова, Н.А. Распопина // Российский вестник акушера-гинеколога. 2002. № 4. С. 44—47.
- 3. Гадиева, Ф.Г. Взаимосвязь иммунной и эндокринной систем у женщин репродуктивного возраста / Ф.Г. Гадиева // Акушерство и гинекология. — 2001. - N = 1.001.
- 4. Кагарлицкая, В.А. Особенности течения и терапия бронхиальной астмы при нарушениях гормональной функции яичников: автореф. дис. ... канд. мед. наук / В.А. Кагарлицкая. Л., 1991. 15 с.
- 5. Купаев, В.И. Состояние системы цитокинов у беременных женщин, страдающих бронхиаль-

- ной астмой / В.И. Купаев, А.В. Жестков // Иммунология. – 2003. – Т. 24. – С. 286–288.
- 6. Либман, О.Л. Лечение обострений бронхиальной астмы у беременных женщин перед родами / О.Л. Либман, А.Г. Чучалин, И.О. Шугинин // Пульмонология. — 2006. — № 6. — С. 84—87.
- 7. Особенности интерфероногенеза у беременных с бронхиальной астмой / А.А. Ефанов, Т.Г. Тареева, И.О. Шугинин и др. // Российский вестник акушера-гинеколога. 2004. Т. 4, № 5. С. 9—11.
- 8. Особенности функции внешнего дыхания у беременных с бронхиальной астмой / Л.С. Логутова, Н.В. Бирюкова, И.О. Шугинин и др. // Российский вестник акушера-гинеколога. 2004. Т. 4, $N \ge 5$. С. 63—66.
- 9. Приходько, О.Б. Клинико-функциональные особенности течения бронхиальной астмы / О.Б. Приходько, Ю.С. Ландышев, Е.Б. Романцова // Пульмонология. 2005. №1. С. 73—76.

Проблемы здравоохранения

- 10. Прямкова, Ю.В. Бронхиальная астма и беременность / Ю.В. Прямкова // Пульмонолгия. 2002. №1. С. 109—116.
- 11. Телешева, Л.Ф. Иммунологические факторы секретов репродуктивного тракта женщины: дис. ... д-ра мед. наук / Л.Ф. Телешева. Челябинск, 2000. 324 c.
- 12. Фассахов, Р.С. Особенности лечения бронхиальной астмы у беременных / Р.С. Фассахов // Акушер. – 2005. – №1. – С. 11–17.
- 13. Федосеев, Б.Г. Иммунология: учебник / Б.Г. Федосеев, Г.А. Игнатьева, И.Г. Сидорович. М.: Медицина, 2002. 432 с.
- 14. Шехтман, М.М. Руководство по экстрагенитальной патологии у беременных / М.М. Шехтман. – М.: Триада – X, 1999. – С. 202–219.
- 15. Шмагель, К.В. Иммунитет беременной женщины / К.В. Шмагель, В.А. Черешнев / М.: Медицинская книга, 2003. 224 с.
- 16. Atopy and asthma: Genetic variants of IL-4 and IL-5 signaling / T. Schirakawa, K. Deichmannn, K. Izuhara et al. // Immunol. Today. − 2000. − Vol. 21, № 2. − P. 60–64.

- 17. Dhabhar, F.S. Stress-induced enhancement of antigen-specific cell-mediated immunity / F.S. Dhabhar, B.S. McEwen // J. Immunol. 1996. Vol. 156. P. 2608–2615.
- 18. Leung, D.Y. Molecular basis of allergic diseases / D.Y. Leung // Mol. Genet. Metab. -1999. -Vol. 63, Nole 3. -P. 157–167.
- 19. Miyaura, H. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids / H. Miyaura, M. Iwata // J. Immunol. 2002. Vol. 168. P. 1087–1094.
- 20. Schatz, M. Spirometry is related perinatal outcome in pregnant women with asthma / M. Schatz, M.P. Dombrowski // Am. J. Obstet. Gynecol. -2006. -Vol. 194, No. 1. -P. 120-126.
- 21. Stamilio, D. Can antenatal clinical and biochemical markers predict the development of severe preeclampsia? / D. Stamilio, H.M. Sehdev, M.A. Morgan // Am. J. Obstet. Gynecol. 2000. Vol. 182, № 3. P. 589–594.
- 22. Tittanen, P. Fine particulate air pollution, resuspended road dust and respiratory health amoung symptomatic children / P. Tittanen, K.L. Timonen, J. Ruuskanen // Eur. Respir. J. 1999. Vol. 13. P. 266–273.

Поступила в редакцию 28 ноября 2009 г.