КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА ПОВЕРХНОСТИ ГИДРОГЕЛЕЙ ОКСИГИДРОКСИДОВ ЖЕЛЕЗА (III), ЦИРКОНИЯ (IV) И ХРОМА (III)

Ю.П. Семушина, С.И. Печенюк

Изучено влияние сорбированных анионов HPO_4^{2-} и $H_2AsO_4^{-}$ на кислотно-основные свойства поверхности оксигидроксидов Fe(III), Cr(III) и Zr(IV) с pH осаждения 9. Кислотно-основные свойства поверхности характеризовали величиной pH точки нулевого заряда (pH_{TH3}). pH_{TH3} определяли потенциометрическим титрованием по методу Паркса. Установлено, что сорбция HPO_4^{2-} -иона приводит к повышению pHTH3, а сорбция $H_2AsO_4^{-}$ – напротив, к значительному ее понижению. Нагревание в растворах NaCl и Na_2SO_4 воздействует на оксигидроксиды с сорбированными анионами слабее, чем просто на свежеосажденные гидрогели.

Введение. Кислотно-основные свойства поверхности адсорбентов можно выражать величиной рН точки нулевого заряда (pH_{TH3}). Это является обычной практикой в работах зарубежных ученых: в любой статье по вопросам адсорбции адсорбент, помимо величины удельной поверхности, характеризуется величиной pH_{TH3} , например, [1]. Известно, что величины pH_{TH3} коррелируют с величинами констант кислотно-основной диссоциации поверхностных ОН-групп [1, 2]. По изменению pH_{TH3} можно, следовательно, судить об изменениях кислотно-основных свойств поверхности оксигидроксида. Ранее мы определили величины pH_{TH3} ряда оксигидроксидов, свежеосажденных и подвергнутых разного рода обработке [3-5]. Здесь изучено влияние адсорбированных фосфат- и арсенат-ионов на кислотно-основные свойства поверхности гидрогелей оксигидроксидов железа (III), циркония (IV) и хрома (III).

Эксперимент. Исходные гели готовили, как описано ранее [3, 4]. Использовали только одно значение pH осаждения - 9. Это значение ранее широко использовалось нами в сорбционных исследованиях и в то же время близко к необходимому для получения образцов с pH_{TH3} , близким к истинному, т.е. не зависящему от концентрации электролита в растворе [3]. Для получения образ-

цов для титрования с сорбированным анионом проводили сорбцию фосфат (HPO_4^{2-}) - и арсенат- $(H_2AsO_4^-)$ ионов, с последующей троекратной отмывкой геля от маточного раствора с помощью центрифуги. Величина сорбции как арсената, так и фосфата составляла ~1,1 ммоль/г геля. Полученные таким образом гидрогели репульпировали в воде и разбавляли в мерной колбе до 50 мл. Образцы либо сразу же титровали, либо предварительно подвергали старению в течение 18 часов при температуре 96 °C в 1М растворе NaCl или в 0,5M растворе Na₂SO₄ с последующей троекратной отмывкой от маточного раствора с помощью центрифуги (одинаково для всех образцов). Дополнительными опытами было установлено, что при старении десорбции анионов сорбата с поверхности гелей не происходит. Для этого в течение старения из системы отбирали пробы и анализировали на содержания фосфат- или арсенат-ионов.

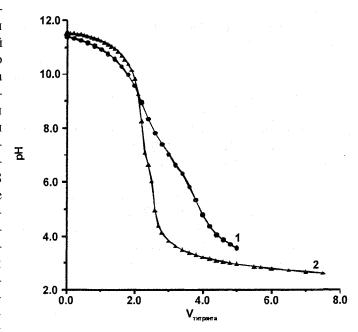


Рис. 1. Пример кривой титрования Fe-геля, состаренного в 1,0 M NaCl, среда 0,5 M NaCl:

1 – кривая титрования Fe-геля; 2 –«холостой» опыт

Точку нулевого заряда определяли по методу Паркса [6]. Для потенциометрического титрования использовали кварцевую ячейку полуоткрытого типа и иономер И-160М со стеклянным электродом ЭСЛ-43-07СР и вспомогательным электродом ЭСр-10103, погруженными в реакционную смесь. Для приготовления раствора фонового электролита брали соответствующие аликвоты раствора NaCl (4 M), чтобы в конечном объеме (200 мл) получить концентрацию 0,5 и 1,0 М. Гель и раствор электролита синхронно продували аргоном для удаления растворенного $C0_2$ до установления постоянного значения pH. Затем суспензию вносили в раствор электролита. Для установления первоначального значения pH добавляли строго определенное и во всех случаях для данной серии образцов одинаковое количество раствора безкарбонатной щелочи (1 или 2 мл 0,1-0,25 N NaOH) и титровали суспензию соляной кислотой (0,1 N), с интервалом 0.1 мл/2 мин. Каждому эксперименту по титрованию образца геля соответствовал «холостой» опыт титрования раствора электролита в тех же условиях. Величину pH_{TH3} находили графическим путем, как точку пересечения графиков зависимости pH_{cycn} vs $V_{титранта}$ и pH_{3n} vs $V_{титранта}$. Полученные результаты представлены в табл. 1, 2; примеры кривых титрования - на рис. 1-4. Для сравнения приведены соответствующие данные для гидрогелей без сорбированных анионов.

Результаты. Из приведенных таблиц видно, что сорбция анионов и выдержка свежеосажденных гидрогелей в растворах хлорида и сульфата натрия приводит для каждого изученного гидрогеля к несколько отличным результатам.

рН_{тнз} гидрогелей с рН осаждения 9, фон 0,5 М NaCl

Таблица 1

Условия получения	Разновидность гидрогеля		
геля	Fe-гель	Zr-гель	Cr-гель
	Без сорбирова	нного аниона	
Свежеосажденный	9,00	8,10	9,05
Состарен в NaCl	9,30	4,20	8,75
Состарен в Na ₂ SO ₄	9,80	6,45	8,95
	С сорбированным	и фосфат-ионом	
Свежеосажденный	9,68	8,85	10,25
Состарен в NaCl	8,65	8,55	9,75
Состарен в Na ₂ SO ₄	9,50	8,65	10,28
	С сорбированным	и арсенат-ионом	
Свежеосажденный	6,85	5,35	8,15
Состарен в NaCl	6,85	6,35	8,35
Состарен в Na ₂ SO ₄	6,55	6,10	7,85

рН_{тнз} гидрогелей с рН осаждения 9, фон 1,0 М NaCl

Таблица 2

Variabus Hamiltoning page	Разновидность гидрогеля		
Условия получения геля	Fe-гель	Zr-гель	
Без	сорбированного анио	на	
Свежеосажденный	8,65	9,00	
Состарен в NaCl	9,20	6,40	
Состарен в Na ₂ SO ₄	10,00	6,30	
C cop	бированным фосфат и	ОНОМ	
Свежеосажденный	9,05	8,40	
Состарен в NaCl	7,64	8,10	
Cостарен в Na ₂ SO ₄	8,90	8,00	
C cop(бированным арсенат-и	оном	
Свежеосажденный	6,40	4,90	
Состарен в NaCl	8,68	5,80	
Состарен в Nа ₂ SO ₄	8,39	5,70	

Сорбция гидрофосфат-ионов приводит в случае всех трех гелей к существенному повышению рНтнз в среде 0,5 M NaCl и к относительно небольшим изменениям в среде 1,0 M NaCl (см.

табл. 1, 2), а сорбция дигидроарсенат-ионов, напротив, к существенному снижению р $H_{\text{тh}3}$ - Следует отметить, что сорбированные HPO_4^{2-} и $\text{H}_2\text{AsO_4}^-$ анионы занимают около 60 % и 30 % имеющихся на поверхности гидрогелей монодентатных сорбционных центров, содержание которых было оценено нами в 3,0÷3,5 ммоль-центров/г [7], и каждый анион HPO_4^{2-} занимает 2 центра, а

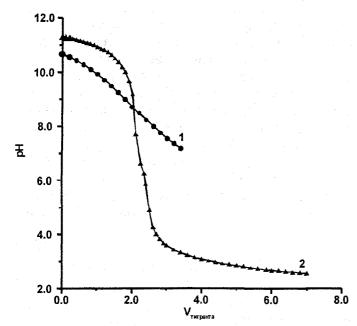


Рис. 2. Пример кривой титрования Fе-геля с сорбированным фосфат-ионом, состаренного в 1,0 M NaCl, среда 0.5 M NaCl:

1 – кривая титрования Fe-геля; 2 – «холостой» опыт

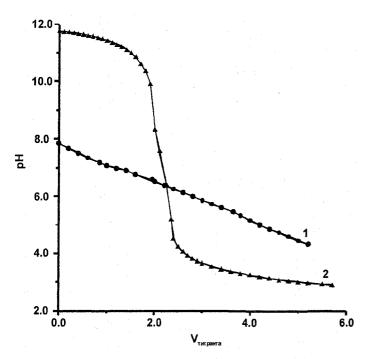


Рис. 3. Пример кривой титрования Zr-геля с сорбированным арсенат-ионом, состаренного в 1,0 M NaCl, среда 0,5 M NaCl: 1 – кривая титрования Zr-геля; 2 – «холостой» опыт

 $H_2AsO_4^-$ - соответственно один центр. Итак, в результате сорбции фосфатионов свежеосажденными гелями их pH_{TH3} возрастает на 0,7 - 1 ед. pH, т.е. область положительного заряда образцов расширяется, поскольку фосфат-ионы вносят дополнительный отрицательный заряд, что увеличивает способность поверхности сорбировать протоны. Несмотря на то, что фосфат- и арсенатионы являются очень близкими аналогами, они по-разному влияют на свойства поверхности. Вероятно, имеет большое значение то, что мы имели дело с дигидроарсенатом, но с гидрофосфатом. Дигидроарсенат вносит на поверхность значительно меньший отрицательный заряд, и сам менее склонен присоединять протоны, чем гидрофосфат, а возможно, даже склонен диссоциировать с отщеплением протонов, в результате чего сорбированный дигидроарсенат подкисляет поверхность.

Выдержка в среде электролита при нагревании приводит для гелей с сорбированным гидрофосфат-ионом к незначительному снижению рНтнз при обеих концентрациях фонового электролита. Для гелей с сорбированным дигидроарсенат-ионом аналогичная выдержка, в подавляющем большинстве случаев, приводит к некоторому повышению рНтнз-

Ранее мы показали [8], что такая обработка для цирконогеля приводит к потере молекулы воды, образованию цирконила и полимерных форм, что, естественно, приводит к ослаблению основных и усилению кислотных свойств оксигидроксида. Для хромогеля, который при той же обработке сохраняет состав Cr(OH)₃ [9], кислотно-основные свойства почти не изменяются. В дальнейшем у хромо- и феррогелей имеет место однотипное поведение, а поведение цирконогеля значительно отличается.

Обработка раствором хлорида натрия при нагревании приводит к более сильному снижению pH_{TH3} феррогеля,

чем обработка раствором сульфата натрия. Хромогель, как и в других случаях, реагирует на обработку слабо, но так же слабо реагирует на нее и цирконогель, его кислотно-основные свойства

как бы стабилизируются. Возможно, имеет место образование слоя фосфата циркония на поверхности. Видно (см. рис. 1), что в результате старения кривая титрования феррогеля без сорбированного фосфата очень похожа на кривые титрования кристаллических оксигидроксидов, Действительно, ранее [9] было показано, что феррогель в этих условиях в значительной степени кристаллизуется с образованием гематита. Феррогель же с сорбированным фосфатом, состаренный в тех же условиях, дает кривую титрования, типичную для гелей (см. рис. 2).

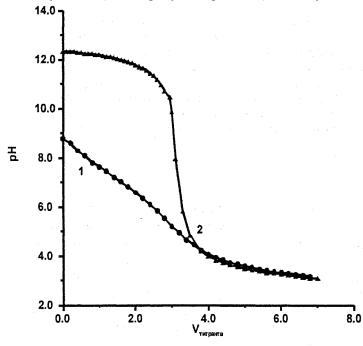


Рис. 4. Пример кривой титрования Zr-геля состаренного в 1,0 M NaCl, среда 0,5 M NaCl:

1 – кривая титрования Zr-геля; 2 – «холостой» опыт

У всех трех оксигидроксидов р $H_{_{TH3}}$ за счет сорбции $H_2AsO_4^-$ образцы затем почти не реагируют на дальнейшую обработку электролитами при титрование в 0,5 M растворе NaCl. При титрование в 1,0 M NaCl, напротив, в результате обработки растворами NaCl и Na_2SO_4 р $H_{_{TH3}}$ возрастает для феррогелей примерно на 2 ед. р H_2 , а для цирконогелей - 0,8-0,9 ед. р H_2 . Сорбированный дигидроарсенат как бы оказывает защитное действие на оксигидроксиды (см. табл. 1, 2).

На рис. 3 видно, что, хотя р $H_{\text{тнз}}$ цирконогеля в результате старения сильно понизился, но вид кривой титрования типичен для гелей, тогда как цирконогель без сорбированного арсената, состаренный таким же образом, имеет кривую титрования, близкую к кривым титрования кристаллических оксигидроксидов (рис. 4).

Следует заметить также, что старение всех описанных образцов в

сульфатном электролите приводит к гораздо меньшим изменениям, чем старение в присутствие хлорид-ионов.

Выводы. Итак, сорбированные гидрофосфат-ионы несколько повышают pH_{TH3} гидрогелей оксигидроксидов железа (III), хрома (III) и циркония (IV) (на 0,7-1,2 ед. pH в среде 0.5 M NaCl). Сорбированные дигидроарсенат-ионы, напротив, снижают pH_{TH3} (на 2,0-4,0 ед. pH). И те и другие сорбированные анионы делают величины pH_{TH3} более стабильными по отношению к концентрации электролита и старению в растворе электролита при нагревании.

Литература

- 1. Hiemstra T., van Riemsdijk W.H. // J. Colloid and Interface Sci. 1996. V. 179. P. 488-508.
- 2. Печенюк СИ. // Успехи химии. 1992. Т. 61. № 4. С. 711-733.
- 3. Печенюк СИ. // Изв. АН. Серия хим. 1999. № 2. С. 229.
- 4. Печенюк СИ., Матвеенко СИ. // Изв. АН. Серия хим. 2000. № 8. С 1329-1332.
- 5. Печенюк СИ. Сорбционно-гидролитическое осаждение платиновых металлов на поверхности неорганических сорбентов. Л.: Наука, 1991. 246 с.
 - 6. Parks G.A., de Bryun P.L. // J. Phys. Chem. 1962. V. 66. P. 967.
- 7. Печенюк СИ., Семушина Ю.П., Кузьмич Л.Ф. // Изв. АН. Серия хим. 2005. № 8. С.1736.
- 8. Печенюк СИ., Кузьмич Л.Ф., Михайлова Н.Л. // Журн. неорган, химии. 2003. Т. 48. № 9. С. 1420-1425.
- 9. Печенюк СИ., Кузьмич Л.Ф., Макарова Т.И., Михайлова Н.Л. // Журн. неорган, химии. 2003 Т. 48. № 8. С. 1255-1265.

Поступила в редакцию 3 октября 2006 г.