СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВЛИЯНИЯ СВЕТА, ГЕНЕРИРУЕМОГО РАЗЛИЧНЫМИ ИСТОЧНИКАМИ ОСВЕЩЕНИЯ, НА ФУНКЦИОНАЛЬНУЮ АКТИВНОСТЬ НЕЙТРОФИЛОВ IN VITRO

О.А. Гизингер, М.В. Осиков, Л.Ф. Телешева, О.И. Огнева Южно-Уральский государственный медицинский университет, г. Челябинск

С использованием цельной крови 60 клинически здоровых людей-добровольцев исследовано влияние света, генерируемого лампами накаливания, люминесцентными лампами и светодиодными носителями в пределах световой температуры 4000—4500 К, с интенсивностью излучения 0,03 Вт/м² в диапазоне длин волн 320—400 нм, на функциональную активность нейтрофилов по показателям лизосомальной, фагоцитарной, НСТ-редуцирующей активности после 10, 20 и 30 мин воздействия при 37 °С. Установлено, что свет, генерируемый лампами накаливания и светодиодными лампами, не оказывает статистически значимого влияния на функциональную активность нейтрофилов. После воздействия света люминисцентных ламп зафиксировано увеличение количества клеток в спонтанном и индуцированном НСТ-тесте.

Ключевые слова: светодиодные источники света, нейтрофилы, фагоцитоз.

Проблема воздействия света на факторы врождённого иммунитета человека и функцию нейтрофильных гранулоцитов, клеток играющих важнейшую роль в осуществлении клеточных реакций врожденного иммунитета, является актуальной, социально значимой и дискутабельной [1]. С одной стороны, ряд исследователей представляет доказательную базу того, что световые воздействия разных источников света так или иначе влияют на механизмы врождённого и адаптивного иммунитета, активируя, или наоборот приводя к иммунным дисфункциям, в частности снижая фагоцитарную активность эффекторов врождённого иммунитета и приводя к блокаде ответа фагоцитирующих клеток на дополнительную стимуляцию, снижая тем самым способность клеток к реализации резервных биоцидных возможностей [2, 4]. С другой стороны, О.А. Гизингер, М.В. Осиковым были высказаны предположения об отсутствии выраженных иммунотропных эффектов света, генерируемых светодиодными носителями [3, 5-7, 10]. В сложившейся ситуации регистрация структурных и функциональных изменений клетки при встрече с квантами света, генерируемыми различными источниками: лампами накаливания, люминисцентными лампами, светодиодами, является объективным параметром для выбора оптимальных источников для формирования комфортной для человека и безопасной с санитарно-гигиенической точки зрения концепции освещения закрытых помещений и открытых пространств [8, 11].

Имеющиеся на сегодняшний день сведения о возможных иммуномодулирующих эффектах светодиодных источников освещения, безусловно, требуют определённой систематизации и анализа

[3, 6, 7]. Спорные вопросы, касающиеся проблемы реактивности нейтрофилов под действием различных источников света, свидетельствуют о целесообразности проведения экспериментальных работ по изучению светового воздействия на эти клетки, что чрезвычайно перспективно в клиническом плане, поскольку полученные результаты позволят расширить наши представления об особенностях функционирования системы врождённого иммунитета у людей, находящихся под воздействием различных источников света, что в практическом плане позволит уточнить социально-гигиенические нормы применения светодиодных источников для интерьерного освещения зданий общественного назначения [5, 11].

Цель работы — исследовать влияние различных источников света на функциональную активность нейтрофилов в экспериментальных условиях in vitro.

Материалы и методы. В соответствии с поставленной целью на базе НИИ иммунологии, научно-образовательного центра «Проблемы фундаментальной медицины» ГБОУ ВПО ЮУГМУ Минздрава РФ исследована функциональная активность нейтрофилов клинически здоровых людей-добровольцев. Выбор донорских нейтрофилов в качестве клеток-мишеней был обусловлен, с одной стороны, их полифункциональной ролью в поддержании гомеостаза в организме, с другой доступностью и, в определённом смысле, простотой исследования отдельных показателей их функциональной активности [11, 12]. Функции нейтрофильных гранулоцитов разнообразны: способность к поглощению патогенов, высвобождение широкого спектра микробоцидных компонентов, в том числе эндогенных антимикробных пептидов, синтез вазоактивных и хемотаксических медиаторов, играющих важную роль в развитии процесса воспаления, регуляции врожденного и адаптивного иммунитета [10]. Благодаря этим продуктам, нейтрофилы осуществляют разнообразные и разнонаправленные регуляторные бактерицидные внутри- и внеклеточные эффекты [2, 4]. При постановке данного эксперимента, авторы преследовали цель изучить возможные иммунотропные эффекты света, излучаемого светодиодами, лампами накаливания, люминесцентными лампами, естественным солнечным освещением при различных временных промежутках. Время воздействия излучения в диапазоне длин волн 320-400 нм при 0.03 Вт/м² излучения составило 10, 20 и 30 мин при температуре 37 °C.

Для выделения нейтрофилов кровь забирали из локтевой вены 60 здоровых студентов дневной формы обучения ГБОУ ВПО ЮУГМУ Минздрава РФ в возрасте от 18 до 22 лет. Добровольцы, участвовавшие в исследовании, дали письменное добровольное информированное согласие в соответствии с требованиями Хельсинской декларации Всемирной Медицинской Ассоциации от 1964 г., дополненной в 1975, 1983, 1989, 2000, 2002 г.; основами законодательства Российской Федерации «Об охране здоровья граждан, правил проведения клинической практики в РФ» (приказ МЗ РФ № 266 от 19.07.03 г.; приказ Росздравнадзора № 2325-Пр/06 от 17.10.06 г.). Протокол исследования и текст информированного согласия одобрены этическим комитетом ГБОУ ВПО ЮУГМУ Минздрава РФ.

Цельную кровь в объеме 10 мл (антикоагулянт гепарин («Гедеон-Рихтер», Венгрия), 50 ЕД/мл) получали пункцией локтевой вены, для выделения чистой фракции нейтрофилов 2 мл крови смешивали с 3 мл стерильного физиологического раствора (0,9%-ный раствор натрия хлористого), полученную смесь наслаивали на градиент плотности стерильных растворов фиколла («Pharmacia», Швеция) и верографина («Spofa», Чехия), плотность верхнего слоя 1,075-1,077 г/см³, нижнего – 1,093–1,095 г/см³ и центрифугировали 40 мин при 1500 об/мин. Кольцо нейтрофилов собирали, переносили в стерильные центрифужные пробирки, отмывали от градиента стерильным раствором Хенкса путём центрифугирования при 1500 об/мин дважды по 7 мин, после чего доводили до концентрации 5 · 10⁶ клеток/мл и использовали для оценки функционального статуса нейтрофилов. Жизнеспособность нейтрофилов, рассчитанная в тесте с 0,1%-ным раствором трипанового синего, составила 98 %.

60 проб нейтрофилов были случайным образом разделены на 4 группы по 15 проб, на которые в течение 10, 20 и 30 мин при температуре 37 °C воздействовали различными источниками света:

группа 1 (контрольная) – естественное освещение; группа 2 – свет, генерируемый лампами накаливания; группа 3 – свет, генерируемый люминесцентными лампами; группа 4 – свет, генерируемый светодиодными источниками.

Опытные и контрольные пробы, содержащие суспензию нейтрофилов, во время облучения находились в специально оборудованных для проведения эксперимента термостатах. Световое поле конфигурировали таким образом, чтобы в любой точке суспензии нейтрофилов отклонение плотности светового потока составляло не более 10 % от заданного. Фагоцитарную и лизосомальную активность нейтрофилов исследовали по методике И.С. Фрейдлин, кислородзависимый метаболизм и функциональный резерв оценивался в НСТ-тесте в модификации А.Н. Маянского и М.Е. Виксмана. Для определения функционального резерва клеток показатели исследовали в спонтанном и индуцированном режимах.

Полученные результаты были подвергнуты статистической обработке с использованием пакета прикладных программ Statistica for Windows 6.0 с вычислением средней арифметической и её стандартной ошибки. О достоверности различий средних величин судили с помощью непараметрического критерия Манна — Уитни. Различия считали значимыми при $p \le 0.05$.

Результаты и обсуждение. При изучении функциональной активности нейтрофилов in vitro установлено, что нейтрофилы, выделенные из периферической крови клинически здоровых людейдобровольцев, фагоцитируют частицы латекса, обладают активным лизосомальным аппаратом и способны к кислородзависимому метаболизму (табл. 1).

Десятиминутное воздействие света, генерируемого как светодиодными источниками, так и лампами накаливания на взвесь нейтрофильных гранулоцитов не привело к достоверным изменениям их лизосомальной и фагоцитарной активности, кислород-зависимого метаболизма, функционального резерва (p > 0.05). НСТ-редуцирующая активность нейтрофилов в спонтанном режиме возрастала после воздействия света люминисцентных ламп по сравнению с естественным и светодиодным освещением (p = 0.05).

Анализ данных, полученных после изучения лизосомальной, фагоцитарной активности и биоцидных возможностей нейтрофилов в НСТ-тесте, функционального резерва нейтрофильных гранулоцитов после 20-минутного воздействия также не выявил различий в показателях лизосомальной и фагоцитарной активности, освещенных естественным светом, лампами накаливания и светодиодными источниками (p > 0,05). После воздействия света люминисцентных ламп увеличивалось количество активных клеток в спонтанном НСТ-тесте (p = 0,05) по сравнению с естественным освеще-

2013, том 13, № 3 95

Таблица 1

Влияние различных источников света на функциональную активность нейтрофилов периферической крови в условиях in vitro (время экспозиции 10 мин)

Показатель	Группа 1 (естественное освещение)	Группа 2 (лампы накаливания)	Группа 3 (лампы люминесцентные)	Группа 4 (лампы светодиодные)
Люминесценция лизосом, у. е.	305,81 ± 14,1	$302,91 \pm 14,31$	$306,81 \pm 13,92$	304,91 ± 14,7
Активность лизосом, %	$93,79 \pm 1,22$	$94,72 \pm 1,22$	$94,71 \pm 1,22$	$95,79 \pm 1,19$
НСТ-спонтанный, % клеток	$36,59 \pm 1,51$	$35,59 \pm 1,51$	$37,05 \pm 1,51$	$37,09 \pm 1,51$
НСТ- спонтанный, у.е. / клетку	$0,41 \pm 0,05$	$0,45 \pm 0,03$	$0,47 \pm 0,03$	$0,47 \pm 0,03$
НСТ-индуциров., % клеток	$60,24 \pm 1,41$	$63,66 \pm 1,62$	67,47 ± 1,54 * †	$60,67 \pm 1,47$
НСТ-индуциров. у.е. / клетку	$0,69 \pm 0,03$	0.74 ± 0.033	0.76 ± 0.032	0.81 ± 0.030
Функциональный резерв	$2,33 \pm 0,13$	$2,54 \pm 0,14$	$2,61 \pm 0,13$	$2,66 \pm 0,13$
Активность фагоцитоза, % клеток	57,13 ± 1,50	$60,49 \pm 1,60$	$62,21 \pm 1,57$	64,01 ± 1,34
Интенсивность фагоцитоза, у.е. / клетку	$1,81 \pm 0,12$	$1,83 \pm 0,17$	$1,84 \pm 0,12$	$1,84 \pm 0,09$

Примечание. Здесь и далее * статистически значимые ($p \le 0,05$) различия по критерию Манна — Уитни с группой 1, # — с группой 2, ^ — с группой 3, † — с группой 4.

Влияние различных источников света на функциональную активность нейтрофилов периферической крови в условиях in vitro (время экспозиции 20 мин)

Таблица 2	2
-----------	---

Показатель	Группа 1 (естественное освещение)	Группа 2 (лампы накаливания)	Группа 3 (лампы люминесцентные)	Группа 4 (лампы светодиодные)
Люминесценция лизосом, у. е.	285,81 ± 15,19	$281,91 \pm 12,00$	$287,81 \pm 12,92$	299,91 ± 11,71
Активность лизосом, %	$83,22 \pm 1,22$	$84,77 \pm 1,00$	$84,91 \pm 0,22$	$85,69 \pm 1,09$
НСТ- спонтанный, % клеток	$26,49 \pm 1,51$	$25,00 \pm 1,33$	35,05 ± 1,22 * # †	$26,09 \pm 1,09$
НСТ-спонтанный, у.е. / клетку	$0,37 \pm 0,05$	$0,41 \pm 0,034$	$0,39 \pm 0,03$	$0,40 \pm 0,026$
НСТ-индуциров., % клеток	$60,00 \pm 1,56$	$61,22 \pm 1,22$	$61,47 \pm 1,00$	$61,67 \pm 1,33$
НСТ-индуциров., у.е. / клетку	$0,59 \pm 0,03$	$0,54 \pm 0,033$	$0,56 \pm 0,032$	$0,51 \pm 0,013$
Функциональный резерв	$2,00 \pm 0,13$	$2,04 \pm 0,14$	$2,01 \pm 0,13$	$2,06 \pm 0,09$
Активность фагоцитоза, % клеток	$47,13 \pm 1,36$	$50,49 \pm 1,44$	51,21 ± 1,67	$50,01 \pm 1,24$
Интенсивность фагоцитоза, у.е. / клетку	$1,61 \pm 0,12$	$1,63 \pm 0,67$	$1,64 \pm 0,42$	$1,64 \pm 0,29$

нием, освещением лампами накаливания и светодиодными лампами. Результаты представлены в табл. 2.

При анализе данных, полученных после 30минутного воздействия света, генерируемого различными источниками на функциональную активность нейтрофилов также не выявлено статистически значимых различий по показателям активности и интенсивности лизосомального аппарата нейтрофилов, фагоцитарной способности. Отмечены значимые изменения биоцидных возможностей нейтрофилов в спонтанном и индуцированном НСТ-тесте (активность клеток) облучённых светом, генерируемым люминесцентными лампами по сравнению с естественным освещением (p=0,05). Результаты представлены в табл. 3.

Таблица 3 Влияние различных источников света на функциональную активность нейтрофилов периферической крови в условиях in vitro (время экспозиции 30 минут)

Показатель	Группа 1 (естественное освещение)	Группа 2 (лампы	Группа 3 (лампы	Группа 4 (лампы
	освещение)	накаливания)	люминесцентные)	светодиодные)
Люминесценция	$280,81 \pm 14,19$	$277,91 \pm 12,99$	$277,81 \pm 12,00$	$280,91 \pm 11,98$
лизосом, у. е.	$280,81 \pm 14,19$	$277,91 \pm 12,99$	$277,81 \pm 12,00$	200,91 ± 11,90
Активность лизосом, %	$80,22 \pm 1,02$	$81,77 \pm 1,12$	$82,91 \pm 0,22$	$83,69 \pm 1,13$
НСТ- спонтанный, %	$22,09 \pm 1,51$	23,00 ± 1,11	26,05 ± 1,09 * #	$24,09 \pm 1,12$
клеток				
НСТ- спонтанный,	0.25 . 0.02	$0,26 \pm 0,004$	$0,27 \pm 0,03$	0.28 ± 0.016
у. е. / клетку	$0,27 \pm 0,02$			
НСТ-индуциров.,	$50,00 \pm 1,16$	$51,22 \pm 1,13$	56,47 ± 1,20 * #	53,67 ± 1,00
% клеток				
НСТ-индуциров.,	$0,59 \pm 0,03$	$0,54 \pm 0,011$	$0,56 \pm 0,02$	$0,51 \pm 0,01$
у. е. / клетку				
Функциональный резерв	$2,10 \pm 0,13$	$2,04 \pm 0,14$	$2,19 \pm 0,13$	$2,06 \pm 0,19$
Активность фагоцитоза,	$27,13 \pm 1,36$	20.40 + 1.44		-
% клеток		$30,49 \pm 1,44$	$31,21 \pm 1,67$	$30,01 \pm 1,24$
Интенсивность	1.61 + 0.12	1.62 + 0.67	1 (4 + 0 42	1.64 + 0.20
фагоцитоза, у.е. / клетку	$1,61 \pm 0,12$	$1,63 \pm 0,67$	$1,64 \pm 0,42$	$1,64 \pm 0,29$

Таким образом, воздействие света, генерируемого лампами накаливания, светодиодными источниками света в пределах световой температуры 4000–4500 К, с интенсивностью излучения 0,03 Вт/м² в диапазоне длин волн 320–400 нм в течение 10–30 мин не приводит к статистически значимому изменению функциональной активности нейтрофильных гранулоцитов, выделенных из периферической крови клинически здоровых людей-добровольцев при сравнении с естественным освещением. Воздействие на нейтрофилы света люминесцентных ламп приводит к активации кислород-зависимого метаболизма по показателям активности НСТ-теста.

Работа проводилась при финансовой поддержке Министерства образования и науки Российской Федерации (государственный контракт № 14.516.11.0091 от 01.07.2013).

Литература

- 1. Гизингер, О.А. Влияние низкоинтенсивного лазерного излучения на нейтрофилы и факторы мукозального иммунитета: дис. ... д-рамед. наук / О.А. Гизингер. Челябинск, 2010 354 с.
- 2. Долгушин, И.И. Нейтрофилы и гомеостаз / И.И. Долгушин, О.В. Бухарин. Екатеринбург: УрОРАН, 2001. 288 с.
- 3. Исследовательские подходы в области безопасности освещения в условиях мегаполиса / О. Гизингер, М. Осиков, О. Бокова и др. // Полупроводниковая светотехника. 2013. Т. 1, № 21. С. 60—61.
- 4. Колесников, О.Л. Влияние неспецифической иммуностимуляции на стресс-реактивность

- и выбор адаптационной стратегии организма: дис. ... д-ра мед. наук / О.Л. Колесников. Челябинск, 1998.-257 с.
- 5. Медико-биологические и санитарно-гигиенические аспекты инновационных технологий уличного, интерьерного и промышленного освещения / М.В. Осиков, Л.Ф. Телешева, О.А. Гизингер и др. // Изв. высш. учеб. заведений. Урал. регион. 2012.-N = 4.-C. 181–187.
- 6. Методология исследований в области безопасности освещения / О.А. Гизингер, М.В. Осиков, Е.Л. Куренков и др. // Современная медицина: актуальные вопросы. 2013. N = 19. C.46 51.
- 7. Мониторинг функционально-метаболического статуса фагоцитирующих клеток под действием квантов света, генерируемых лазером низкой интенсивности ИК-диапазона (850 нм) / О.А. Гизингер, О.И. Огнева, М.В. Осиков, М.О. Матвеев // Современные наукоемкие технологии. 2013.-N 2.-C.77-78.
- 8. Оптические свойства гранулярных клеток крови: нейтрофилы / Д.Ю. Орлова, М.А. Юркин, К.А. Семьянов и др. // Вестник Новосибир. гос. ун-та. Серия «Физика». 2007. Т. 2, $N \ge 4$. C. 83-87.
- 9. Организация межвузовского мониторинга безопасности использования светодиодного освещения в условиях мегаполиса / Л.Ф. Телешева, О.А. Гизингер, М.В. Осиков и др. // Вестник Челяб. гос. ун-та. 2013. N 27. C. 197-198.
- 10. Осиков, М.В. Роль орозомукоида в регуляции активности систем плазменного протеолиза при экспериментальной почечной недостаточности / М.В. Осиков // Бюл. эксперим. биологии и медицины. 2009. Т. 148, № 7. С. 27—30.

11. Пинегин, Б.В. Нейтрофилы: структура и

2013, том 13, № 3

Проблемы здравоохранения

функция / Б.В. Пинегин, А.Н. Маянский // Иммунология. – 2007. – Т. 28, № 6. – С. 374–382.

12. Плехова, Н.Г. Бактерицидная активность

фагоцитов / Н.Г. Плехова // Журн. микробиологии, эпидемиологии и иммунобиологии. — 2006. — № 6. — С. 89–96.

Гизингер О.А., доктор биологических наук, профессор кафедры микробологии, вирусологии, иммунологии и клинической лабораторной диагностики, Южно-Уральский государственный медицинский университет (Челябинск), OGizinger@gmail.com.

Осиков М.В., доктор медицинских наук, профессор кафедры патологической физиологии, Южно-Уральский государственный медицинский университет (Челябинск), prof.osikov@yandex.ru.

Телешева Л.Ф., доктор медицинских наук, профессор кафедры микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики, Южно-Уральский государственный медицинский университет (Челябинск), teleshevalarisa@mail.ru.

Огнева О.И., аспирант научного образовательного центра «Проблемы фундаментальной медицины», Южно-Уральский государственный медицинский университет (Челябинск), ognevaolga2@mail.ru.

Bulletin of the South Ural State University Series "Education, Healthcare Service, Physical Education" 2013, vol. 13, no. 3, pp. 94–98

COMPARATIVE ANALYSIS OF LIGHT EFFECT GENERATED BY VARIOUS LIGHT SOURCES ON THE CAPACITY OF NEUTROPHILS

- **O.A. Gizinger**, South Ural State Medical University, Chelyabinsk, Russian Federation, OGizinger@gmail.com,
- **M.V. Osicov**, South Ural State Medical University, Chelyabinsk, Russian Federation, prof.osikov@yandex.ru,
- **L.F. Telesheva**, South Ural State Medical University, Chelyabinsk, Russian Federation, teleshevalarisa@mail.ru,
- **O.I. Ogneva**, South Ural State Medical University, Chelyabinsk, Russian Federation, ognevaolga2@mail.ru

Using the whole blood of 60 healthy volunteers the effect of light generated by incandescent lamps, luminescent lamps and light-emitting diode carriers on the capacity of neutrophils considering the indices of lysosomal, phagocytic and NBT-reducing activities after 10, 20 and 30 minutes of influence at the temperature of 37 °C has been studied. The light temperatures were 4000–5000 K, the radiation intensity was 0,03 W/m², the wave length was 320–400 nm. It's stated that the light generated by incandescent and light-emitting diodelamps doesn't have a statistically significant effect on the capacity of neutrophils. The increase of cells number has been recorded in the spontaneous and induced NBT-test after the effect of luminescent lamps.

Keywords: light-emitting diode lamps, neutrophils, phagocytosis.

Поступила в редакцию 10 июля 2013 г.