АНАЛИЗ ИНДИВИДУАЛЬНОГО ЗДОРОВЬЯ ПО ФУНКЦИОНАЛЬНЫМ ПАРАМЕТРАМ СИСТЕМ ОРГАНИЗМА ЧЕЛОВЕКА

Д.В. Викторов ЮУрГУ, г. Челябинск

В системе физического воспитания студентов вузов при всём многообразии её концептуальных и методологических подходов к обучению, развитию и совершенствованию, формируемый потенциал физкультурно-оздоровительной деятельности характеризуется не столько количественными параметрами физического развития и активной позиции в удовлетворении интересов и потребностей в двигательной активности, сколько достижением оптимального уровня здоровья, телесных кондиций и полезными физиологическими изменениями в организме.

Ключевые слова: высшее образование, студенты, здоровье.

До настоящего времени проблема здоровья учащихся различных учебных заведений весьма далека от оптимального решения и по-прежнему остра [1, 3]. Стоит сказать, что любая достоверная информация, позволяющая продвинуться на этом пути, является, на наш взгляд, актуальной и поможет улучшить сложившуюся к настоящему времени ситуацию.

В общебиологическом плане здоровье можно определить как единство всевозможных обменных процессов между организмом и окружающей средой. Большинство исследователей характеризуют здоровье через состояние адаптационных процессов, которые отражают разные степени адаптации той или иной системы организма, через уровень функциональных возможностей организма, диапазон его компенсаторно-адаптационных реакций в экстремальных условиях, через состояние гармоничной саморегуляции и динамического равновесия со средой через психофизическое состояние человека, характеризующееся отсутствием патологических изменений и функциональным резервом, достаточным для полноценной биосоциальной адаптации и сохранения физической и психической работоспособности в условиях естественной среды обитания [3-5].

Такой «адаптационный подход» позволяет рассматривать организм человека как динамическую, саморегулирующуюся систему, которая непрерывно приспособляется к условиям окружающей среды путем изменения уровня функционирования отдельных систем и соответствующего напряжения регуляторных механизмов.

Приспособление или адаптация к новым условиям достигается «ценой адаптации» или «ценой затрат функциональных ресурсов организма» и появлением «третьего состояния», которое описывается в литературе как состояние, когда «резервы функциональных систем организма сдвинуты в сторону истощения». Плата за адаптацию за-

висит от резервных возможностей организма, и в случае, когда от организма требуются все новые усилия, происходит срыв адаптационных механизмов. Реакция организма в процессе взаимодействия с факторами окружающей среды протекает по-разному в зависимости от силы воздействующего фактора, времени воздействия и адаптационных возможностей организма, которые определяются наличием функциональных ресурсов. Состояние организма как результат деятельности функциональных систем определяется его способностью обеспечивать уравновещенность организма со средой. Адаптационно-приспособительная деятельность требует затрат энергии и информации, в связи с чем можно говорить о «цене» адаптации, которая определяется степенью напряжения регуляторных механизмов и величиной израсходованных функциональных резервов. Изменение уровня функционирования системы или ее элементов, т. е. усиление энергетических или метаболических процессов, не ведет к нарушению сложившегося гомеостаза, если не возникает перенапряжения регуляторных механизмов и не истощается функциональный резерв.

Несомненно, одними из показателей хорошего здоровья являются система дыхания (СД) и сердечно-сосудистая система (ССС) человека.

Следует отметить, что в связи с увеличением численности обучающихся в системе высшего профессионального образования неуклонно растёт количество студентов с отклонениями в здоровье. На 2006—2007 учебный год отделение оздоровительной гимнастики Южно-Уральского государственного университета насчитывало 337 студентов различных специальностей. Из них по заболеваниям: сколиоз – 60, миопия – 45, болезни сердечно-сосудистой системы — 38, заболевания мочеполовой системы — 15 человек. На 2007—2008 учебный год отделение ЛФК насчитывало 350 человек (соответственно по заболеваниям): сколиоз — 70, миопия —

Интегративная физиология

40, болезни сердечно-сосудистой системы — 40, заболевания дыхательной системы — 15, заболевания мочеполовой системы — 15. Число студентов-первокурсников Южно-Уральского государственного университета, только за 2007 год обратившихся за медицинской помощью достигло 8494 человек по поводу таких заболеваний, как ОРВИ, грипп, фарингит, ангина, острый ринит, заболевания ЖКТ [2].

С этой целью, основные задачи сводятся к следующему:

- 1. На основании анализа режимов восстановления ССС и СД осуществить сравнительную оценку устойчивости этих функциональных систем испытуемых.
- 2. Произвести сравнительную оценку времени релаксации, времени первого и полного восстановления.
- 3. Осуществить полный статистический анализ эффективности физической подготовленности испытуемых.
- 4. Построить регрессионные модели связи всех контролируемых параметров испытуемых.

При решении задач следует помнить, что в практике исследования ЧСС используются полностью контролируемые программы занятий в виде строго дозированного пробегания определённых отрезков или работы на велотренажёре по 20–30 мин 3–4 раза в неделю. По мере роста тренированности и повышения функциональных возможностей систем кровообращения и дыхания учащиеся постепенно переводятся на частично самостоятельные контролируемые программы, когда 1 раз в неделю занятия проводятся под наблюдением преподавателя, а 2 раза дома самостоятельно – быстрая ходьба и бег, чередующийся с ходьбой, при заданной ЧСС. Такая целенаправленная долговременная программа дает весьма обнадеживающие результаты.

Поэтому, опираясь на экспериментальные данные и результаты их статистического анализа, оценивался характер изменения устойчивости ССС и СД в условиях различной эффективности физической подготовленности испытуемых.

Методика проведения эксперимента и обработки экспериментальных данных.

Три группы испытуемых ЮУрГУ (КГ, ЭГ-1 и ЭГ-2) дважды принимали участие в активном тестировании (осенью – в сентябре и весной – в мае).

Перед началом эксперимента был выявлен уровень общей физической подготовленности (ОУФП) занимающихся с помощью системы оценки, состоящей из ряда простейших показателей.

Обследование включало следующие антропометрические и морфофункциональные измерения в состоянии покоя: определение роста тела в длину (м), массы тела (кг), жизненной ёмкости лёгких (ЖЕЛ – мл.), частоты сердечных сокращений (ЧСС – уд./мин), артериального давления (АД – мм рт. ст.), пульсовое давление (ПД – разница между систолическим и диастолическим артериальным давлением); динамометрия кистей рук (кг), время восстановления ЧСС после дозированной физической нагрузки в течение 3 мин (20 приседаний за 30 с).

В результате сопоставления отдельных показателей, нами были использованы следующие качественные параметры, определяющие уровень физического здоровья студентов:

- 1. МОК (минутный объём крови), определяемый как произведение систолического объёма крови на ЧСС и показывающий, какое количество крови, несущей кислород, выбрасывается за 1 мин.
- 2. Индекс кровообращения (ИК), характеризующий эффективность работы сердца как основного и единственного гемодинамического насоса, по формуле: ИК = МОК / m, где МОК минутный объём крови, m масса тела.
- 3. Коэффициент выносливости (КВ), характеризующий степень тренированности сердечнососудистой системы по формуле А. Квааса: КВ = ЧСС / ПД.
- 4. Коэффициент экономичности кровообращения (КЭК), характеризующий деятельность сердечнососудистой системы по формуле КЭК = $= (CA\Pi \Pi A\Pi) \times VCC$.
- 5. Проба Розенталя или пятикратное измерение ЖЕЛ с 15-секундными интервалами.
- 6. Жизненный индекс (ЖИ), показывающий, какой объём воздуха в мл из ЖЕЛ приходится на каждый килограмм массы тела. Следовательно, чем больше величина указанного индекса, тем выше уровень физического развития. Определяется по формуле ЖИ = ЖЕЛ / Масса тела, кг.

Распределение студентов по группам проводилось также с учётом физической подготовленности: определялось индексом Спилберга - масса тела (кг), деленная на кубический корень из величины длины тела (м). Быстрота оценивалась результатом в беге на 100 м (с), выносливость в беге на 2000 м (с) скоростно-силовые качества в прыжке в длину с места (см). Очевидно, что гармоничность телосложения имеет решающее значение в оценке успеваемости по предмету «Физическая культура». Учитывая, что показатели физического развития у учащихся по существу находятся вне компетенции и задач физического воспитания, необходимо нормативы и оценки скоростно-силовых качеств и выносливости тесно связать с размерами тела.

Контрольная группа работала в обычном режиме двухразовой физической подготовки в учебную неделю.

Экспериментальная группа-1 работала в режиме четырёх уроков недельного цикла физической подготовки (2 занятия обязательных и 2 занятия самостоятельные, в произвольной форме). Для контроля текущего состояния ССС и СД в начальной и конечной фазах эксперимента исследовалась реакция этих систем на дозированную физическую нагрузку и характер восстановления. В качестве такой нагрузки использовалась работа максимальной интенсивности: пробегание отрезков 200 м в максимально возможном для испытуемого темпе.

Параллельно студенты на самостоятельных занятиях вели дневник самоконтроля, где учитывались и просчитывались вышеназванные показатели.

Со студентами второй экспериментальной группы (25 человек) акцент делался на учебнотренировочную деятельность по плаванию. Обработка полученных данных показала, что качественное улучшение показателей произошло у занимающихся по морфофункциональным показателям: жизненная ёмкость лёгких, частота сердечных сокращений, артериальное давление, время восстановления ЧСС после дозированной физической нагрузки в течение 3 мин (20 приседаний за 30 с). Было установлено, что двигательная активность на занятиях по плаванию в большей степени стимулирует развитие функциональных резервов дыхания, что обеспечивает более комфортные условия для выполнения трудовых операций.

Следует также отметить, что двигательная активность студентов ЭГ-2 была повышенной и поэтому обусловила восстановительные процессы, продолжающиеся после достижения данного уровня физической и функциональной подготовленности.

Предварительно для каждого испытуемого (а в каждой группе их было по 20 человек) в течение 10 минут каждую минуту измерялась ЧСС и определялось среднее значение в состоянии покоя, а также верхняя и нижняя границы допустимых отклонений (3 % от величины среднего). После дозированной физической работы снимались кривые восстановления. Режим измерений был принят следующий: первые пять минут исследования восстановительного периода измерения производились каждую минуту. Последующие пять измерений осуществлялись с интервалом в одну минуту. Все последующие измерения осуществлялись с интервалом в 2 минуты до полного восстановления.

Полным восстановлением считалось такое состояние, при котором три, последовательно взятых, измерения оставались в пределах трёхпроцентных допустимых отклонений. По форме кривых восстановления затем осуществлялась качественная оценка восстановительных режимов и, соответственно, устойчивость функциональных систем для каждого испытуемого в отдельности.

Параллельно с тестированием испытуемых в те же периоды времени (сентябрь — май) осуществлялась оценка их уровня физической подготовленности в следующих упражнениях: сгибание и разгибание рук в упоре лёжа, прыжок с места в длину, подъём туловища из положения лёжа на спине, удержание тела в висе на перекладине, наклон тела вперёд из положения сидя, бег на 1000 м. По результатам этих тестов оценивался общий уровень физической подготовленности (ОУФП).

Результаты исследования. Наиболее важные результаты экспериментальных исследований получены в программной статистической среде EXEL и WORD.

Исходя из результатов видно, что доля случаев с апериодическим режимом восстановления

ЧСС в экспериментальной группе увеличивается. Это говорит о том, что с увеличением физической нагрузки испытуемых устойчивость их ССС возрастает.

Во всех группах были выявлены студенты, у которых в конце учебного года функциональные возможности превысили первоначальные. Следовательно, после завершения экспериментальных этапов и перехода к двухразовым плановым занятиям, многие студенты могут и должны заниматься физкультурно-оздоровительной деятельностью с увеличением физической нагрузки. Дозировка тренировочных нагрузок производится в соответствии с данными тестирования. Так, если при тестировании одышка — гипоксические изменения, появились при пульсе 130 уд./мин, то нужно тренироваться, снизив величину ЧСС на 10–20 уд./мин.

И, наконец, через год и более можно переходить к самостоятельным занятиям ходьбой и бегом, периодически контролируя самостоятельно свое состояние.

Сравнивая полученные значения распределения значений эффективности общего уровня физической подготовленности испытуемых контрольной группы в мае, с аналогичными данными в экспериментальной группе, не трудно заметить большие значения ОУФП с одновременным повышением эффективности такого уровня физической подготовленности.

Полученные фактические данные функционального состояния ССС у студентов ЭГ-1 свидетельствуют о доминирующей роли в общем механизме адаптации организма. Выраженность изменений зависит от характера и направленности физической нагрузки, состояния организма человека, соответствующего этапа подготовки и ряду других факторов. При воздействии нагрузок различной направленности происходят конкретные специфические функциональные, а затем и морфологические изменения в сердце. Занятия с преимущественной скоростно-силовой направленностью и нагрузки на выносливость вызывают гиперфункцию сердца, что приводит к снижению ЧСС: чем сильнее и интенсивнее работало сердце во время тренировок, тем реже оно будет сокращаться во время отдыха. Такой режим наиболее благоприятен для восстановления сердечной деятельности.

Установлено, что нагрузки, способствующие развитию выносливости, приводят к перестройке структурных элементов сердца, а именно повышению его объёма. Это свидетельствует о важной роли данных нагрузок в расширении резервных возможностей сердца. Эта особенность процесса адаптации в сочетании со скоростно-силовой направленностью физических нагрузок приводит к относительно равномерному увеличению сердца.

Анализ взаимоотношений между подсистемами ССС спортсмена, позволил констатировать высокую лабильность внутрисистемной её регуляции функций в процессе адаптации к большим физическим нагрузкам различной направленности,

Интегративная физиология

адекватную адаптивность межсистемного взаимодействия и эффективное реагирование на различные факторы. Установлено, что студенты в ЭГ-2 отличаются более выраженной жизненной емкостью легких и выносливостью дыхательной мускулатуры. Это вполне логично, так как вентиляция лёгких в воде, как более плотной среде осуществляется за счет большой глубины дыхания.

Специфические изменения артериального и пульсового давления, коэффициента выносливости, минутного объёма крови и других показателей относились, главным образом, к центральному звену кровообращения и зависели от специализации спортсмена. Так, для ЭГ-2 уменьшение происходило за счет снижения пульсового давления, а у ЭГ-1 — за счет снижения ЧСС, т. е. повышения тонуса эластичных сосудов.

Это подтверждается исследованиями, в которых результаты отражают проявление различных механизмов регуляции кровообращения. У студентов ЭГ-2 доминирующая роль в увеличении кровоснабжения тканей принадлежит состоянию пропульсивной деятельности сердца; у студентов КГ — периферическому руслу; а у студентов ЭГ-1 — установлена промежуточная схема регуляции кровообращения [2].

Таким образом, исходя из представлений о принципах адаптации функциональных систем, полученные нами экспериментальные данные, свидетельствуют о том, что снижение уровня реактивности системы дыхания к специфическим раздражителям представляет собой один из механизмов повышения надежности управления системой и стабильности ее регуляции.

Из приведенного следует, что последействие нагрузок и кумулятивный эффект их повторений закономерно связан с чувствительностью элементов респираторной системы, которая, изменяя физиологическую реактивность доминирующих в этом виде деятельности систем, преобразует тренировочный эффект нагрузки таким образом, что повышается эффективность функционирования организма в целом.

Необходимо отметить, что значительный интерес студенческого контингента к средствам плавания и многофункциональность соответствующих упражнений, которая обеспечивается специфическими условиями водной среды и позволяет увеличить моторную плотность занятия, свидетельствуют об их эффективности. В таком случае, одним из этапов разработки научно-обоснованной технологии управления процессом физического совершенствования студентов средствами плавания является изучение взаимодействия компонентов структуры соответствующей специальной физической подготовленности с показателями здоровья. Решение данной проблемы с привлечением метода корреляционного анализа позволяет выделить приоритеты развития специальных физических

способностей с учетом возрастных особенностей реализации тренировочной и оздоровительной задач, что обеспечивает научную обоснованность формирования у будущих специалистов фундамента работоспособности для активной и продолжительной жизнедеятельности.

Выводы

- 1. Установлено, что увеличение физической нагрузки в недельном цикле подготовки испытуемых приводит к достоверному повышению устойчивости их сердечно-сосудистой системы.
- 2. Установлено также, что наряду с этим происходит достоверное повышение устойчивости работы системы дыхания этих испытуемых.
- 3. Параллельно происходит достоверное повышение эффективности уровня физической подготовленности (как частного, так и общего).
- 4. Реализация задачи формирования крепкого фундамента здоровья и работоспособности в процессе физической подготовки студенческой молодежи является актуальной проблемой, а одним из наиболее эффективных способов ее решения заслуженно считается научно-обоснованное внедрение средств плавания, что предусматривает изучение взаимосвязей и информационной значимости компонентов состояния здоровья и показателей СФП по плаванию студентов с учетом возрастных особенностей.
- 5. При анализе здоровья прослеживается тенденция недооценки биологических особенностей организма, в том числе конституциональных. В то же время накоплено много данных о том, что индивидуально-типологические особенности организма существенно влияют на многие стороны здоровья.

Литература

- 1. Быков, В.С. Формирование здорового стиля жизни у студенческой молодёжи / В.С. Быков // Физическая культура и здоровье студентов вузов: материалы V междунар. науч.-практ. конф. СПб.: Изд-во СПбГУП, 2009. С. 10–11.
- 2. Гаттаров, Р.У. Психофизиологический потенциал и уровень здоровья студентов / Р.У. Гаттаров. – Челябинск: Изд-во ЮУрГУ, 2005. – 192 с.
- 3. Исаев, А.П. Информационные технологии в здравостроении, образовании и формировании современного человека / А.П. Исаев // Проблемы и перспективы здравостроения: сборник научных работ / под ред. А.П. Исаева. Челябинск: Изд-во ЮУрГУ, 2000. Вып. II. С. 84—85.
- 4. Ильинич, В.И. Студенческий спорт и жизнь: учеб. пособие для студентов высших учебных заведений / В.И. Ильинич. М.: АО «Аспект Пресс», 1995.—144 с.
- 5. Лубышева, Л.И. Современные подходы к формированию физкультурного знания у студентов вузов / Л.И. Лубышева // Теория и практика физической культуры. 1993. № 3. С. 19–21.

Поступила в редакцию 30 августа 2010 г.