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Introduction

In 2002 N. Sidorov and M. Falaleev have described (see [14] chapter 6) applications of

Lyapunov–Schmidt’s ideas [17] to the theory of ordinary differential operator equations in Banach

spaces with the irreversible operator in the main part (briefly, singular DOE). A number of initial-

value and boundary-value problems, which model real dynamic processes of filtering, thermal

convection, deformation of mechanical systems, electrical engineering (models of Barrenblatt–

Zheltova, Kochina, Oskolkov, Hoff, V. Dolexal, M. Korpusov, N. Pletner, A. Svechnikov and

others), can be reduced to such equations.

Singular differential operator equations have been investigated in the works by S. Krein,

N. Sidorov, B. Loginov, I. Melnikhova, K. Akhmedov, A. Kozhanov, R. Schowalter, G. Sviridyuk,

M. Falaleev and others. Extended bibliographies can be found in monographs by N. Sidorov

[11], N. Sidorov, B. Loginov, A. Sinitsyn and M. Falaleev [14], R. Cassol and R. Schowalter [1],

G. Sviridyuk and V. Fedorov [15].

The problem of applying Lyapunov–Schmidt’s ideas to singular differential operator equations

having Fredholm operators in the main part had been stated already by L. Lusternik in the course

of work of his symposia held at Moscow State University in the mid 1950s and has been solved

by N. Sidorov (see [11], chapter 4). It appeared obvious that the analog of the classical branching

equation for such equations (see [17]) is a system of differential equations of an infinite order.

In view of substantial difficulties, which arise in the process of investigation of this system, the

theory of singular DOE is presently far from being completed, moreover, there are few results

for the nonlinear case. In the monograph [14] an explication of foundations of the general theory

of singular differential operator equations is given. Authors have employed the apparatus of

generalized Jordan chains (developed in [17]) and the fundamental operators of singular integro-

differential expressions (constructed in [2]), the theory of generalized functions, the Nekrasov–

Nazarov’s method of undetermined coefficients, which is combined with asymptotic methods of
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the theory of differential equations with singular points, topological methods and the technique

of construction of the regularizator algorithm by N. Sidorov’s [11], methods of semigroups and

groups with kernels developed by G. Sviridyuk [15]. Such a mixture of diverse methods has given

the possibility of investigating a wide class of singular ordinary differential operator equations

and classes of partial differential operator equations with the Noether operator in the main part.

Some recent general results for singular linear partial differential operator equations have been

included to this paper.

Let x = (t, x′) be a point in the space Rm+1, x′ = (x1, . . . , xm), D = (Dt, Dx1
, . . . , Dxm

),
α = (α0, . . . , αm), | α |= α0 + α1 + · · ·αm, where αi are integer non-negative indices, Dα =

∂|α|

∂tα0 . . . ∂xαm

m
.

We also suppose that Bα : Dα ⊂ E1 → E2 are closed linear operators with dense domains in

E1, x ∈ Ω, where Ω ⊂ Rm+1, | t |≤ T, x′ ∈ Rm, E1, E2 are Banach spaces.

It is assumed that ∀u ∈ E1 the function Bα(x)u is analytical with respect to x′ and sufficiently

smooth with respect to t.
Consider the following differential operator L(D) =

∑

|α|≤lBα(x)Dα. The operator
∑

|α|=lBαD
α we call the main part of L(D).

We consider the equation

L(D)u = f(x), (1)

where f : Ω → E2 is an analytical function of x′ sufficiently smooth with respect to t. The initial

value problem for (1), when E1 = E2 = Rn and the matrix B = Bl0...0 is not singular, has been

thoroughly investigated in fundamental papers by I.G. Petrovsky (see [8]). In the case when the

operator B is not invertible the theory of initial and boundary value problems for (1) has not

been developed even for the case of finite dimensions. The case with the Fredholm operator B
with dimN(B) ≥ 1 is of special interest. This case, when x ∈ R1, has been considered from

different viewpoints in [11, 7, 15] etc. The case, when x ∈ Rm+1, dimN(B) ≥ 1 has attracted

our attention only lately [13]. In general, the standard initial value problem with conditions

Di
tu|t=0 = gi(x

′), i = 0, . . . , l − 1 for (1) has no classical solutions for an arbitrary right-hand

side f(x).
This does not mean that in the present case we do not have a ≪correctly≫ stated problem

for eq. (1), which has a unique solution for any right-hand side f(x). For example, the positive

result can be obtained by decomposing the space E1 into a direct sum of subspaces in accordance

with the properties of operator coefficients Bα and assigning initial conditions on these subspaces

separately. This technique applied in a different situation [16] has been also used in the present

work. It is assumed that B is a constant Fredholm operator, and among the coefficients Bα there

is a constant operator A
def

≡ Bl10...0, l1 < l, with respect to which B has a complete A−Jordan

set.

In Section 1 the sufficient conditions of existence of the unique solution for eq. (1) with the

initial conditions

Di
tu|t=0 = gi(x

′), i = 0, 1, . . . , l1 − 1, (2)

(I − P )Di
tu|t=0 = gi(x

′), i = l1, . . . , l − 1, (3)

are obtained, where gi(x
′) are analytical functions with values in E1, Pgi(x

′) = 0, i = l1, . . . , l−1,
and the left and right regularizators of singular operators in Banach spaces are constructed. Here

P is the projector of E1 onto corresponding A-root subspace (see [17] chapter 7). In Section

2 a method of fundamental operators for constructing the generalized solution in the class of

Schwarz distributions [9] is considered. These investigations can be useful for the new applications

[14, 15, 6] of singular differential systems in mechanics and physics and for the development of

the new numerical methods in these areas.
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1. Continuous Solutions

The first part of this section gives some auxiliary information from [13], the second part

suggests the reduction of eq. (1) to the form of Cauchy–Kovalevskaya, whereas in the third part

the theorems of existence and uniqueness of solutions of the problem (1), (2), (3) are proved. In

conclusion of the first section, left and right regularizators of singular operators in Banach spaces

are constructed.

1.1. Decomposition of Banach spaces, (P,Q)-commutativity
of linear operators

Let Mi and Ni be mutually complementary subspaces of Banach spaces E1 and E2, i.e.

E1 = M1 +N1, E2 = M2 +N2, P is a projector onto M1 parallel to N1, Q is a projector onto

M2 parallel to N2.
Let A be a linear and, generally speaking, unbounded operator from E1 in E2 with the

domain of definition dense in E1.

Definition 1. Let A : D ⊆ E1 → E2. If PD ⊆ D, AM1 ⊆M2, A(N1 ∩ D) ⊆ N2, then it is

said that the operator A is (P,Q)−reducible.

Definition 2. If each time when u ∈ D(A), the vector Pu ∈ D(A) and APu = QAu, then

they say that the operator A is (P,Q)− commutating.

The operator A (P,Q)−commutating if and only if A are (P,Q)−reducible.

Property 1. Let the operator A be (P,Q)− commutating, and the operator Γ (Q,P )−
commutating, R(Γ) ⊆ D(A), R(A) ⊆ D(Γ). Hence:

1. the operator AΓ is Q− commutating, M2∩D(Γ) and N2∩D(Γ) are its invariant subspaces;

2. the operator ΓA is P− commutating, M1∩D(A) and N1∩D(A) are its invariant subspaces.

Let us further assume that M1 and M2 are some finite-dimensional subspaces, M1 ⊆
D(A), P̃ =

∑n
1
〈·, γi〉ϕi, Q̃ =

∑n
1
〈·, ψi〉zi, furthermore, 〈ϕi, γk〉 = δik, 〈zi, ψk〉 = δik,

{ϕi} ∈ M1, {zi} ∈ M2. Then the condition of (P̃ , Q̃)−commutativity of the operator A implies

that AM1 ⊆ M2. Hence, there exists a matrix ℵA : Rn → Rn, such that AΦ = ℵAZ, where

Φ = (ϕ1, . . . , ϕn)′, Z = (z1, . . . , zn)′. This matrix will be called the matrix of (P̃ , Q̃)-commutation

of the operator A.
Property 2. If AΦ = ℵAZ, A

∗Ψ = ℵBΥ, ℵA,ℵB : Rn → Rn, where Ψ = (ψ1, . . . , ψn)′, Υ =
(γ1, . . . , γn)′, then A (P̃ , Q̃)−commutates if and only if ℵB = ℵ′

A.

Consider now a special case when the basis in M1 is comprized by the elements {ϕ
(j)

i }, i =
1, n, j = 1, pi, which form a complete A−Jordan set of the operator B, where B is the Fredholm

operator.

Hence Bϕ
(1)

i = 0, Bϕ
(j)

i = Aϕ
(j−1)

i , i = 1, n, j = 2, pi, and there exist {ψ
(j)

i } such that

B∗ψ
(1)

i = 0, B∗ψ
(j)

i = A∗ψ
(j−1)

i . The system {z
(j)

i } biorthogonal to {ψ
(j)

i } will be taken as the

basis in M2 ⊂ E2.
Let us introduce the projectors

P =

n
∑

i=1

pi
∑

j=1

〈·, γ
(j)

i 〉ϕ
(j)

i , Q =

n
∑

i=1

pi
∑

j=1

〈·, ψ
(j)

i 〉z
(j)

i . (4)

Property 3 Let the projectors P and Q be defined by the formulas (4). Hence operators B
and A be (P,Q)− commutating, furthermore, the corresponding matrices of (P,Q)− commutation
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are symmetric cell-diagonal ones: ℵB = diag(B1, . . . ,Bn), ℵA = diag(A1, . . . ,An), where

Bi =









0 0 . . . 0
0 0 . . . 1
. . . . . . . . . . . .
0 1 . . . 0









, Ai =





0 . . . 1
. . . . . . . . .
1 . . . 0



 , i = 1, n,

if pi ≥ 2 and Bi = 0, Ai = 1 if pi = 1.

1.2. Reduction of equation (1) to the form of Cauchy–Kovalevskaya

Introduce the denotations B
def
= Bl0...0, A

def
= Bl10...0, where Bl0...0, Bl10...0 are constant

operators, l1 < l, D(B) ⊆ D(A).
Condition 1 D(B) ⊆ D(Bα) ∀α, the Fredholm operator B has a complete A-Jordan set

ϕ
(j)

i , B∗ has a complete A∗-Jordan set ψ
(j)

i , i = 1, n, j = 1, pi, and the systems γ
(j)

i ≡

A∗ψ
(pi+1−j)

i , z
(j)

i ≡ Aϕ
(pi+1−j)

i , i = 1, n, j = 1, pi, corresponding to them, are biorthogonal,

k = p1 + . . . pn is a root number.

Hence, the formulas (4) define the projectors P and Q respectively onto the root subspaces

E1k = span{ϕ
(j)

i }, E2k = span{z
(j)

i }.
Since E1 = E1k ⊕ E1∞−k, any solution of eq. (1) can be represented in the form

u(x) = Γv(x) + (C(x),Φ), (5)

where Γ = (B +
∑n

i=1
〈·, γ

(1)

i 〉z
(1)

i )−1 is a bounded operator from E2 in E1,

C(x) = (C1(x), . . . Cn(x))′, Ci(x) = (Ci1(x), . . . , Cipi
(x)),

Φ = (Φ1, . . . ,Φn)′, Φi = (ϕ
(1)

i , . . . , ϕ
(pi)

i ),

v : Ω ⊂ Rm+1 → E2∞−k, C : Ω ⊂ Rm+1 → Rk.

Since

Γz
(j)

i = ϕ
(pi+2−j)

i , Γ∗γ
(j)

i = ψ
(pi+2−j)

i , j = 1, pi,

ϕ
(pi+1)

i

def
= ϕ

(1)

i , ψ
(pi+1)

i

def
= ψ

(1)

i ,

the operator Γ is (P,Q)− commutating.

When subsituting the function (5) into eq. (1), it is possible to obtain the equality

Dl
tv +

∑

|α|≤l, α 6=(l,0,...,0)

Bα(x)ΓDαv +
∑

|α|≤l

Bα(x)(DαC,Φ) = f(x). (6)

Let:

Condition 2 Each of the coefficients Bα satisfy just one of the following three conditions:

1. Bα is (P,Q)−commutating, briefly – Bα ∈ α0;

2. QBα = 0, briefly – Bα ∈ α1;

3. (I −Q)Bα = 0, briefly – Bα ∈ α2.
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Now, by projecting (6) onto E2∞−k, we obtain the equation

Dl
tv +

∑

|α|≤l, α/∈α2, α 6=(l,0,...,0)

Bα(x)ΓDαv = (7)

= (I −Q)f(x) −
∑

|α|≤l, α∈α1

Bα(x)(DαC,Φ).

By projecting the equation (6) onto E2k, we obtain the system

ℵl0...0D
l
tC +

∑

|α|≤l, α/∈α1, α 6=(l,0,...,0)

ℵ′
αD

αC = b(x, v). (8)

Here the vector function b : Ω → Rk is defined by the formula

〈f(x) −
∑

|α|≤l, α/∈α2

Bα(x)ΓDαv,Ψ〉.

Therefore, equation (6) is reduced to equation (7) and system (8). This equation (7), as a

differential equation with respect to v, has the form of Cauchy-Kovalevskaya.

1.3. Selection of initial conditions. Theorems of existence and uniqueness

Let us find the solution of eq. (1) which would satisfy the initial conditions (2), (3). Since

ΓE2∞−k ⊂ E1∞−k, the solution (5) satisfies the initial conditions (2), (3) if and only if

Di
tv|t=0 =

{

B(I − P )gi(x
′), i = 0, . . . , l1 − 1,

Bgi(x
′), i = l1, . . . , l − 1,

(9)

Di
tC|t=0 = βi(x

′), i = 0, . . . , l1 − 1. (10)

Here βi(x
′) are coefficients of projections Pgi(x

′), i = 0, . . . , l1 − 1. Hence, the desired v(x)
satisfies the initial-value problem (7), (9) in the Cauchy-Kovalevskaya form, and the desired

vector function C(x) satisfies, respectively, the initial-value problem (8), (10).

Consider the following two cases when the initial-value problem (8), (10) also has the Cauchy-

Kovalevskaya form.

Case 1. k = n.
Hence, in system (8), ℵl0...0 = 0, ℵl10...0 = E is a unique matrix. If ℵα = 0 for l1 <| α |≤ l,

condition 2 is satisfied for P =
∑n

1
〈·, γ

(1)

i 〉ϕ
(1)

i , Q =
∑n

1
〈·, ψ

(1)

i 〉z
(1)

i ,

{α1 = ∅} ∨ {α2 = ∅} ∨ { max
α∈(α1∪α2)

| α |< l1} (11)

then system (8) has the order of l1 and the Cauchy-Kovalevskaya form.

In this connection, the corresponding initial-value problems (7), (9); (8), (10) have unique

solutions.

If ℵα are triangular n × n−matrices with zeros on the main diagonal and to the right of it,

and condition (11) holds, then system (8) turns out to be a recurrent sequence of equations of

the order of l1 in the Cauchy-Kovalevskaya form.

The reasoning explicated above implies the following

Theorem 1. Let B be a Fredholm operator, 〈Aϕ
(1)

i , ψ
(1)

k 〉 = δik, i, k = 1, n, and let condition

2 for P =
∑n

1
〈·, γ

(1)

i 〉ϕ
(1)

i , Q =
∑n

1
〈·, ψ

(1)

i 〉z
(1)

i and condition (11) be satisfied. If for l1 <| α |≤ l
the matrices ℵα are either equal to zero or all the matrices have zeros to the right of the main
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diagonal, and for l1 <| α | these have zeros also on the main diagonal, then problem (1), (2), (3)

has a unique solution.

Case 2. k > n.
Now, in the system (8) ℵl0...0 = ℵB, ℵl10...0 = ℵA, where the matrices ℵB, ℵA are as defined

above (see section 1.2).

Theorem 2. Let

1. conditions 1, 2 be satisfied, furthermore, in condition 2 α1 = ∅ or α2 = ∅;

2. matrices ℵ′
α = [ℵα

ik]
n
i,k=1

are lower block-triangular, i.e. ℵα
ik = 0 for i < k;

3. there are zeros in each diagonal block ℵα
ii to the left of the nonmain diagonal, and for

| α |> l1 there are zeros also on the nonmain diagonal.

Then the initial-value problem (1), (2), (3) has a unique solution.

For the purpose of proving it is sufficient to note that under the conditions of Theorem 2

system (8) turns out to be a recurrent sequence of linear differential equations of the order of l1
in the Cauchy–Kovalevskaya form, and eq. (7) is a differential equation of the order of l1 in the

Cauchy–Kovalevskaya form with the bounded operator coefficients. Note that due to the structure

of the matrices ℵ′
α components of the vector function C : Ω → Rk are defined in the following

sequence c1pi
, . . . , c11, c2p2

, . . . , c21, cnpn
, . . . , cn1. For a more special situation, details of proving

may be found in [12].

1.4. The left and right regularizators of singular operators in Banach spaces

Let A and B be constant linear operators from E1 to E2, where E1 and E2 are Banach

spaces, x(t) is an abstract function, t ∈ Rn with the values in E1(E2). The set of such functions is

denoted by Xt(Yt). Now introduce the operator Lt, defined on Xt and Yt and which is commutable

with operators B,A. The examples of such an operator Lt are differential and integral operators,

difference operators and their combinations. Note that if operators are solved with respect to

higher order derivatives, then they usually generate correct initial and boundary value problems.

In other cases, when operators are unsolved according to higher order derivatives, we encounter

singular problems (see subsec. 1.1).

Consider the operator LtB − A, which acts from Xt to Yt, where B,A are closed linear

operators from E1 to E2 with dense domains, and D(B) ⊆ D(A). If B is invertable, then the

operator LtB−A can be reduced to regular operator by multiplication on B−1. If B is uninvertible,

then LtB − A is called the singular operator. Let operator B in LtB − A be Fredholm and

dimN(B) = n ≥ 1. If λ = 0 is an isolated singular point of the operator-function B−λA, then the

operators LtB−A,BLt−A admit some regularization. For the purpose of explicit representation of

the regularizer we use Schmidt’s pseudo resolvent Γ = B̂−1, where B̂ = B +
∑n

i=1
< .,A∗ψ

(pi)

i >

Aφ
(pi)

i . On account of condition 1 (sect. 1) and using the equalities φ
(j)

i = ΓAφ
(j−1)

i , ψ
(j)

i =

Γ∗A∗ψ
(j−1)

i , j = 2, . . . , pi, i = 1, . . . , n it is easy to verify the following equalities

(Γ −
n

∑

i=1

pi
∑

j=1

Lj
t < ., ψ

(pi+1−j)

i > φi)(LtB −A) = Lt − ΓA,

(LtB −A)(Γ −
n

∑

i=1

pi
∑

j=1

Lpi+1−j
t < ., ψi > φ

(j)

i ) = Lt −AΓ.

As a result, we have the following
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Theorem 3. Suppose condition 1 in section 1.2 be satisfied. Then

Γ −
n

∑

i=1

pi
∑

j=1

Lj
t < ., ψ

(pi+1−j)

i > φi and Γ −
n

∑

i=1

pi
∑

j=1

Lpi+1−j
t < ., ψi > φ

(j)

i

are the left and right regularizators of LtB −A, respectively.

2. Generalized solutions

In this section we present the main ideas of a new approach to the study of degenerate

linear differential equations in Banach spaces. Studies of solvability of the Cauchy problem for

these equations in the classes of finitely smooth functions have shown that such problems have

smooth (classical) solutions only for certain relations between the input data of the problem,

i.e., between initial conditions and right-hand side (of free function) equation. The search for

these sufficient conditions, as well as formulas for the solution itself, usually is the goal of such

studies. In general case the absence of classic solution naturally leads (in linear case) to the

formulation of problems in the class of distributions (generalized functions), since in this case

there is no need to match the input data of the problem. Therefore, for linear equations the

three problems have been formulated. First we need to allocate classes of generalized functions

in Banach spaces in which solutions are unique. Second, we need to develop the technology of

the generalized solutions construction. And finally we have to study the relationship between the

classic generalized solutions. Such triple problem we study in terms of fundamental operator-

functions of degenerate integral-differential operators. In order to find the solutions of differential

equations in distributions spaces we employ the fundamental operator function which appears to

be the most natural tool.

In order to present the essence of this approach we use the following example of the Cauchy

problem for integral-differential equation of the second kind

Bu(2)(t) = Au(t) +

t
∫

0

g(t− s)Au(s)ds+ f(t), (12)

u(0) = u0, u′(0) = u1, (13)

where A,B are closed linear operators from E1 to E2, with dense domains of definition, D(B) ⊂
D(A), E1 and E2 are Banach spaces, g(t) is continuous function, f(t) is sufficiently smooth

function B is Fredholm operator.

Let us introduce the main terminology from [14], which use below.

2.1. Generalized functions in Banach spaces

Let E be Banach space, let E∗ be – conjugate Banach space. We call the set of finite infinitly

differentiable functions s(t) with values in K(E∗) as the main space K(E∗). The convergence in

K(E∗) we introduce as follows. The sequence of functions sn(t) converge to s(t) in K(E∗) if:

a) ∃R > 0 such that ∀n ∈ N suppsn(t) ⊂ [−R,R];

b) ∀α ∈ N for n→ +∞ sup
[−R,R]

‖ s
(α)

n (t) − s(α)(t) ‖→ 0.

Generalized function (distribution) with values in Banach space E we call any linear

continuous functional defined on K(E∗). The set of all generalized functions with values in E we

note as K ′(E). Convergence in K ′(E) is defined as week (point-wise). Here we follow the classic

monograph of V.S.Vladimirov and define the set of generalized functions as D′. The equality of
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two generalized functions, support of generalized function, multiplication of generalized function

on infinitly differentiable function are defined as for classic generalized functions. Any locally

Bohner integrable function f(t) with values in E derive the following regular generalized function

(

f(t), s(t)

)

=

+∞
∫

−∞

〈f(t), s(t)〉dt, ∀s(t) ∈ K(E).

All the generalized functions, which operations can be defined using that rule are called as regular

generalized functions. The rest of the generalized functions are called as singular. The classic

example of singular generalized function is the Dirac delta-function:

(

aδ(t), s(t)

)

= 〈a, s(0)〉dt, ∀s(t) ∈ K(E), ∀a ∈ E.

The distribution set with left-bounded support (K ′
+
(E) ⊂ K ′(E)) we denote as K ′

+
(E). This

class is the most conventional in our studies.

Let E1, E2 are the Banach spaces, A(t) ∈ C∞ is operator-function with values in

L(E1, E2), h(t) ∈ D′ is classic generalized function [18]. Then the following multiplication (formal

expression) A(t)h(t) is called as generalized operator-function. The following generalized operator-

function will correspond to integral-differential operator (12)

L2(δ(t)) = Bδ′′(t) −A
(

δ(t) + g(t)θ(t)
)

.

Let f(t) ∈ K ′
+
(E1), h(t) ∈ D′

+
, then the generalized function A(t)h(t) ∗ f(t) ∈ K ′

+
(E2)

defined as follows

(

A(t)h(t) ∗ f(t), s(t)

)

=

(

h(t),

(

f(τ), A∗s(t+ τ)

))

, ∀s(t) ∈ K(E2)

is called as convolution of generalized operator-function A(t)h(t) and generalized function f(t).
This definition is correct since supports of the functions h(t) ∈ D′

+
и f(t) ∈ K ′

+
(E1) are left

bounded. It’s proofed using the same scheme as proof of the convolution existence in algebra D′
+

in classical theory of generalized functions [18]. It is to be noted that convolution exists in the

distributions space with left bounded support and it has associativity property which we employ

to proof the principal statements here.

Let us introduce the key concept. The fundamental operator-function of integral-differential

operator L2(δ(t)) is called generalized operator-function E2(t), which satisfies the following

equalities:

E2(t) ∗ L2(δ(t)) ∗ u(t) = u(t), ∀u(t) ∈ K ′
+
(E1),

L2(δ(t)) ∗ E2(t) ∗ v(t) = v(t), ∀v(t) ∈ K ′
+
(E2).

The reason for such construction introduction is as follows. If the fundamental operator-

function E2(t) is known for integral-differential operator L2(δ(t)), then in class K ′
+
(E1) exists the

unique generalized solution

u(t) = E2(t) ∗ f(t) ∈ K ′
+
(E1)

of

L2(δ(t)) ∗ u(t) = f(t), f(t) ∈ K ′
+
(E2).

Indeed, if v(t) 6= u(t) is other solution of convolution equation then

v(t) = E2(t) ∗ L2(δ(t)) ∗ v(t) = E2(t) ∗ f(t) = u(t).
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2.2. Fundamental operator-functions of degenerative integral-differential
operators and applications

Theorem 4. If A,B are closed linear operators from E1 into E2, D(B) ⊂ D(A), D(A) =

D(B) = E1, B is Fredholm operator, R(B) = R(B), B has complete A-Jordan set {ϕ
(j)

i , i =
1, n, j = 1, pi} [17], then

a) 2nd order differential operator
(

Bδ
′′

(t) −Aδ(t)
)

on the class K ′
+
(E2) has fundamental

operator-function

E1(t) = Γ
sinh(

√
AΓt)

√
AΓ



I −

n
∑

i=1

pi
∑

j=1

〈·, ψ
(j)

i 〉Aϕ
(pi+1−j)

i



 θ(t)−

−

n
∑

i=1





pi−1
∑

k=0







pi−k
∑

j=1

〈·, ψ
(j)

i 〉ϕ
(pi−k+1−j)

i







δ(k)(t)



 ;

b) 2nd order integral-differential operator
(

Bδ
′′

(t) −A
(

δ(t) + g(t)θ(t)
)

)

in class K ′
+
(E2) has the following fundamental operator-function

E2(t) = Γ
∞

∑

k=1

(

δ(t) + g(t)θ(t)

)k−1

∗
t2k−1

(2k − 1)!
θ(t)(AΓ)k−1 ×



I −
n

∑

i=1

pi
∑

j=1

〈·, ψ
(j)

i 〉Aϕ
(pi+1−j)

i



−

−
n

∑

i=1





pi−1
∑

k=0







pi−k
∑

j=1

〈·, ψ
(j)

i 〉ϕ
(pi−k+1−j)

i







δ(2k)(t) ∗

(

δ(t) + R(t)θ(t)

)k+1



 ,

where {ψ
(j)

i , i = 1, n, j = 1, pi} − A∗-Jordan set of the operator B∗, Γ− is the Trenogin-Schmidt

[17] operator, R(t) is resolvent of the kernel (−g(t)θ(t)).
The Cauchy problem (12)-(13) in terms of generalized functions can be presented as following

convolution equation

L2(δ(t)) ∗ ũ(t) = f(t)θ(t) +Bu1δ(t) +Bu0δ
′(t),

which is class of distributions with left bounded support K ′
+
(E1) has the following unique solution

ũ(t) = E2(t) ∗

(

f(t)θ(t) +Bu1δ(t) +Bu0δ
′(t)

)

. (14)

Further analysis of the singular and regular components of the expression (14) for generalized

solution allows us to obtain the theorems on classic solutions of the problem (12)-(13).

Let us demonstrate that based on the following examples.

Example 1. (Boussinesk–Löve Equation) For equation which model (in 1D case)

longitudinal oscillations in thin elastic bar with taking into account the lateral inertia [19],

(λ− ∆)vtt(t, x̄) = α2∆v(t, x̄) + f(x̄), λ, α 6= 0,

where x̄ ∈ Ω ⊂ Rm, Ω is bounded area with boundary ∂Ω of the class C∞, we study the

Cauchy-Dirichlet problem in the cylinder Ω ×R+

v

∣

∣

∣

∣

∣

t=0

= v0(x̄),
∂v

∂t

∣

∣

∣

∣

∣

t=0

= v1(x̄) x ∈ Ω
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v

∣

∣

∣

∣

∣

∂Ω

≡ 0 (x, t) ∈ ∂Ω ×R+.

We can reduce that problem to Cauchy problem (12)-(13) with g(t) ≡ 0, if the spaces E1 and E2

can be selected as follows

E1 ≡
◦

H
k+2

[Ω] ≡

{

u ∈W k+2

2
: u(x̄) = 0, x̄ ∈ ∂Ω

}

, E2 ≡ Hk ≡W k
2

where W k
p ≡W k

p (Ω) is Sobolev space 1 < p <∞, and let

B = λ− ∆, A = α2∆, λ ∈ σ(∆).

Here B is Fedholm operator and lengths of all the A-Jordan chains are 1s, i.e. in the formula

for fundamental operator-function E1(t) from the theorem pi = 1. Which means that generalized

solution (14) do not contains the singular component. The remaining regular component will be

classic solution of this problem if the following conditions are fuilfilled

(f(x̄) + α2λv0(x̄), ϕk) = 0, (v1(x̄), ϕk) = 0 ∀ϕk : λ = λk,

here ϕk are eigen functions of the Laplace operator, which correspond eigen value λ ∈ σ(∆).
Example 2. (Equation of viscoelastic plates with memory) Let us address the

following equation

(γ − ∆)vtt(t, x̄) = −∆2v(t, x̄) +

t
∫

0

g(t− s)∆2v(s, x̄)ds+ f(t, x̄),

where x̄ ∈ Ω ⊂ Rm, Ω is bounded area with boundary ∂Ω of the class C∞, for m = 2 и f(t, x̄) = 0
such equation describes the oscillation of viscoelastic plates with memory [20]. We follow here the

last example and study the Cauchy-Dirichlet problem on cylibder Ω ×R+

v

∣

∣

∣

∣

∣

t=0

= v0(x̄),
∂v

∂t

∣

∣

∣

∣

∣

t=0

= v1(x̄) x ∈ Ω

v

∣

∣

∣

∣

∣

∂Ω

≡ 0 (x, t) ∈ ∂Ω ×R+.

Such problem we can reduce to the Cauchy problem (12)–(13), if we select spaces and operators

as follows

E1 ≡
◦

H
k+4

[Ω] ≡

{

u ∈W k+4

2
: u(x̄) = 0, x̄ ∈ ∂Ω

}

, E2 ≡ Hk ≡W k
2

B = γ − ∆, A = −∆2, γ ∈ σ(∆).

Here (similar with example 1) B is Fredholm operator and lengths of all the A-Jordan chains

are equal to 1, i.e. in the formula for fundamental operator-function E2(t) from the theorem all

pi = 1, i.e. generalized solution (14) does not contain singular component. Hence the remaining

component will be the classic solution if the following conditions are fuilfilled

(

f(0, x̄) − γ2v0(x̄), ϕk

)

= 0,

(

∂f(0, x̄)

∂t
− γ2v1(x̄) + g(0)γ2v0(x̄), ϕk

)

= 0 ∀ϕk : λ = λk,

here ϕk are eigen functions of Laplace operator which correspond to eigen value λ ∈ σ(∆).
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3. Conclusion

The approach presented in the paper employs essentially the technique of generalized Jordan

sets [16], stable pseudoconverses of Noether operators and (P,Q)−commutativity of the operators

[13] (in accordance with the Jordan structure of the equation’s operator coefficients). This is

right the technique that makes it possible to state correct initial-boundary-value problems for

the differential equations with partial derivatives and with the Noether (unbounded) operator in

the main part, as well as to reduce these problems to regular ones. This approach has given

the possibility to construct generalized solutions with the finite singular part and to obtain

solutions of a number of classes of singular differential equations in closed form [14, 2]. For the

first time such an approach was applied by Sidorov [10] in 1972 for the purpose of constructing

the asymptotic of branching solutions of nonlinear singular differential and integro-differential

equations. Later the method was developed in a number of works and applied to different

problems (see the bibliography in [14]). For the case of matrix coefficients, the technique of

pseudoconverses of matrices and differential regularizers was developed in detail in the works by

Yu.Ye. Boyarintsev, M.V. Bulatov, V.F. Chistyakov and others on the basis of classical methods

of linear algebra, This technique was applied by these authors for the purpose of numerical

solving algebro-differential equations. Our method can be applied in a more general situation

of unbounded operator coefficients, and so, it can be employed not only for constructing the

asymptotic of accurate solutions but also for development of stable numerical methods for some

classes of Sobolev-type [15] singular differential equations with partial derivatives for which a

theory of numerical methods still does not exist.

The work was supported by Federal Framework Programm ≪Scientific and Teaching Staff of

Innovative Russia for 2009-2013≫, State Contract № П696, 20.09.2010.
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НЕПРЕРЫВНЫЕ И ОБОБЩЕННЫЕ РЕШЕНИЯ
СИНГУЛЯРНЫХ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ
УРАВНЕНИЙ В БАНАХОВЫХ ПРОСТРАНСТВАХ

Н.А. Сидоров, М.В. Фалалеев

Строятся непрерывные и обобщенные решения сингулярных уравнений в бана-

ховых пространствах. На основе альтернативного метода Ляпунова-Шмидта и обоб-

щенных жордановых наборов дифференциально-операторное уравнение в частных

производных с фредгольмовым оператором в главном выражении редуцируется к

регулярной задаче. С помощью этой техники построены левые и правые регуляри-

заторы вырожденных операторов в банаховых пространствах и получены в явном

виде фундаментальные операторы ряда классов вырожденных уравнений.

Ключевые слова: сингулярные уравнения, регуляризация, распределения, фун-

даментальная оператор-функция.
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