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Introduction

In 2002 N. Sidorov and M. Falaleev have described (see [14] chapter 6) applications of
Lyapunov—Schmidt’s ideas [17] to the theory of ordinary differential operator equations in Banach
spaces with the irreversible operator in the main part (briefly, singular DOE). A number of initial-
value and boundary-value problems, which model real dynamic processes of filtering, thermal
convection, deformation of mechanical systems, electrical engineering (models of Barrenblatt—
Zheltova, Kochina, Oskolkov, Hoff, V. Dolexal, M. Korpusov, N. Pletner, A. Svechnikov and
others), can be reduced to such equations.

Singular differential operator equations have been investigated in the works by S. Krein,
N. Sidorov, B. Loginov, I. Melnikhova, K. Akhmedov, A. Kozhanov, R. Schowalter, G. Sviridyuk,
M. Falaleev and others. Extended bibliographies can be found in monographs by N. Sidorov
[11], N. Sidorov, B. Loginov, A. Sinitsyn and M. Falaleev [14], R. Cassol and R. Schowalter [1],
G. Sviridyuk and V. Fedorov [15].

The problem of applying Lyapunov—Schmidt’s ideas to singular differential operator equations
having Fredholm operators in the main part had been stated already by L. Lusternik in the course
of work of his symposia held at Moscow State University in the mid 1950s and has been solved
by N. Sidorov (see [11], chapter 4). It appeared obvious that the analog of the classical branching
equation for such equations (see [17]) is a system of differential equations of an infinite order.
In view of substantial difficulties, which arise in the process of investigation of this system, the
theory of singular DOE is presently far from being completed, moreover, there are few results
for the nonlinear case. In the monograph [14] an explication of foundations of the general theory
of singular differential operator equations is given. Authors have employed the apparatus of
generalized Jordan chains (developed in [17]) and the fundamental operators of singular integro-
differential expressions (constructed in [2]), the theory of generalized functions, the Nekrasov—
Nazarov’s method of undetermined coefficients, which is combined with asymptotic methods of
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the theory of differential equations with singular points, topological methods and the technique
of construction of the regularizator algorithm by N. Sidorov’s [11], methods of semigroups and
groups with kernels developed by G. Sviridyuk [15]. Such a mixture of diverse methods has given
the possibility of investigating a wide class of singular ordinary differential operator equations
and classes of partial differential operator equations with the Noether operator in the main part.
Some recent general results for singular linear partial differential operator equations have been
included to this paper.

Let z = (t,2) be a point in the space R, 2/ = (x1,...,2y), D = (D¢, Dyy, ..., Da,)),
a = (ag,...,0m), | @ |= ap+ a1 + -y, where o; are integer non-negative indices, D¢ =

ol
ot . dxyr

We also suppose that B, : D, C E1 — E5 are closed linear operators with dense domains in
E1, z € Q, where Q € R™*!, |t |< T, ' € R™, Ey, E are Banach spaces.

It is assumed that Yu € E; the function B, (z)u is analytical with respect to ' and sufficiently
smooth with respect to ¢.

Consider the following differential operator L(D) = 3}, < Ba(z)D*. The operator
> laj=t BaD® we call the main part of L(D).

We consider the equation

L(D)u = f(z), (1)

where f : Q — F» is an analytical function of 2’ sufficiently smooth with respect to t. The initial
value problem for (1), when Ey = Es = R™ and the matrix B = By, ¢ is not singular, has been
thoroughly investigated in fundamental papers by I.G. Petrovsky (see [8]). In the case when the
operator B is not invertible the theory of initial and boundary value problems for (1) has not
been developed even for the case of finite dimensions. The case with the Fredholm operator B
with dimN(B) > 1 is of special interest. This case, when # € R!, has been considered from
different viewpoints in [11, 7, 15] etc. The case, when z € R™! dimN(B) > 1 has attracted
our attention only lately [13]. In general, the standard initial value problem with conditions
Diuli—o = gi(2'), i =0,...,1—1 for (1) has no classical solutions for an arbitrary right-hand
side f(z).

This does not mean that in the present case we do not have a <correctly> stated problem
for eq. (1), which has a unique solution for any right-hand side f(z). For example, the positive
result can be obtained by decomposing the space E7 into a direct sum of subspaces in accordance
with the properties of operator coefficients B, and assigning initial conditions on these subspaces
separately. This technique applied in a different situation [16] has been also used in the present
work. It is assumed that B is a constant Fredholm operator, and among the coefficients B, there

is a constant operator A dzef By,0..0, l1 < I, with respect to which B has a complete A—Jordan
set.

In Section 1 the sufficient conditions of existence of the unique solution for eq. (1) with the
initial conditions

Diufi—o = gi(z'), i=0,1,...,11 — 1, (2)
(I — P)Diui—g = gi(z'), i=11,...,1—1, (3)
are obtained, where g;(x') are analytical functions with values in £y, Pg;(z') =0, i=1y,...,1—1,

and the left and right regularizators of singular operators in Banach spaces are constructed. Here
P is the projector of E; onto corresponding A-root subspace (see [17]| chapter 7). In Section
2 a method of fundamental operators for constructing the generalized solution in the class of
Schwarz distributions [9] is considered. These investigations can be useful for the new applications
[14, 15, 6] of singular differential systems in mechanics and physics and for the development of
the new numerical methods in these areas.
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1. Continuous Solutions

The first part of this section gives some auxiliary information from [13], the second part
suggests the reduction of eq. (1) to the form of Cauchy—Kovalevskaya, whereas in the third part
the theorems of existence and uniqueness of solutions of the problem (1), (2), (3) are proved. In
conclusion of the first section, left and right regularizators of singular operators in Banach spaces
are constructed.

1.1. Decomposition of Banach spaces, (P, ())-commutativity
of linear operators

Let M; and N; be mutually complementary subspaces of Banach spaces E; and FE», i.e.
Ei = M; + N1, Eo = My + No, P is a projector onto My parallel to N1, () is a projector onto
My parallel to N.

Let A be a linear and, generally speaking, unbounded operator from FE; in Fo with the
domain of definition dense in Fj.

Definition 1. Let A: D - E1 — EQ. ]f PD - D, AMl - MQ, A(Nl N D) - NQ, then it is
said that the operator A is (P, Q)—reducible.

Definition 2. If each time when u € D(A), the vector Pu € D(A) and APu = QAu, then
they say that the operator A is (P,Q)— commutating.

The operator A (P, Q)—commutating if and only if A are (P, Q)—reducible.

Property 1. Let the operator A be (P,Q)— commutating, and the operator T' (Q, P)—
commutating, R(I') C D(A), R(A) C D(I'). Hence:

1. the operator AT is Q— commutating, MyN D(T') and NoN D(T) are its invariant subspaces;

2. the operator T'A is P— commutating, M1 N D(A) and NyND(A) are its invariant subspaces.

Let us further assume tNhat M; and Ms are some finite-dimensional subspaces, M; C
D(A4), P = Z?<'a7¢>§0i7 Q = Z?<’¢l>zl7 furichermorea (i) = ik, (2i,%k) = ik,
{¢i} € My, {z;} € M. Then the condition of (P, Q))—commutativity of the operator A implies
that AM; C M,. Hence, there exists a matrix N4 : R — R™, such that A® = N4 Z, where
®=(¢1,...,0n), Z=(z1,...,2,)" This matrix will be called the matrix of (P, Q)-commutation
of the operator A.

Property 2. If AD =N, Z, AU = RgT, Ny, Np: R* — R™, where U = (Yq,...,1,), T =
(Y1, -+ > 9n)s then A (P, Q)—commutates if and only if Xg = N/,.

Consider now a special case when the basis in M; is comprized by the elements {cpz(] )}, i =
1,n, j = 1, p;, which form a complete A—Jordan set of the operator B, where B is the Fredholm
operator.

Hence B(pgl) =0, Bgo( D= A (3_1), i=1,n n j = 2,p;, and there ex1st {w(] } such that
B*wgl) =0, B*fL/JZ(]) A*wu Y. The system {z } biorthogonal to {zp } will be taken as the
basis in My C Es.

Let us introduce the projectors

D 9) WU ENES 3) SRS e
=1 j=1 i=1 j=1

Property 3 Let the projectors P and @ be defined by the formulas (4). Hence operators B
and A be (P,Q)— commutating, furthermore, the corresponding matrices of (P, Q)— commutation
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are symmetric cell-diagonal ones: Ng = diag(Bi, ..., By), N4 = diag(A1, ..., A,), where

0 0 0 I
B; = A=, =T,
0 1 0 1 0

pr122 andBZ:O, Alzl prz:]-

1.2. Reduction of equation (1) to the form of Cauchy—Kovalevskaya

def

Introduce the denotations B def B0, A = Byo..0, Wwhere Bjg._o, Bio..0 are constant

operators, Iy <, D(B) C D(A).
Condition 1 D(B) C D(B,) VY, the Fredholm operator B has a complete A-Jordan set
@5]), B* has a complete A*-Jordan set 2/)1(]), i = 1,n, 7 = 1,p;, and the systems 7(]) =

%

A*l/)i(p#l_j),z.(j) = Ago(piJrl_j) i = 1,n,5 = 1,p;, corresponding to them, are biorthogonal,

7 7 )
k=mp1+...p, is a oot number.
Hence, the formulas (4) define the projectors P and @ respectively onto the root subspaces

Ey = span{gpgj)}, Eo = Span{zzgj)}.
Since Ey = E @ F1oo—k, any solution of eq. (1) can be represented in the form

u(z) =Tv(z) + (C(z), @), ()

where ' = (B+ )" (-, 'yi(l)>z.(1))*1 is a bounded operator from Es in Fy,

7

C(z) = (Ci(z),...Cn(2)), Ci(z) = (Cir(2),...,Cip,(z)),

¢ = (q)l’ o '7(Dn)l7 CI)Z = (3051)7 c ‘79052%))7

v:QC R S Fyo, C:QC R — RF

Since

j i+2—7 j i+2-7)
T2 = P27 pogld) = g P27 =Ty,

7 )

PSP T (1) i) def 1)

the operator I' is (P, @Q)— commutating.
When subsituting the function (5) into eq. (1), it is possible to obtain the equality

Dlv + > Bo(z)IDv + > Ba(x)(D*C,®) = f(x). (6)
|l <L, a(L,0,...,0) ] <

Let:
Condition 2 FEach of the coefficients B, satisfy just one of the following three conditions:

1. By is (P,Q)—commutating, briefly — B, € aY;
2. QB =0, briefly — B, € ol

3. (I —Q)B, =0, briefly — B, € o?.
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Now, by projecting (6) onto Ess_, we obtain the equation

Dl + > B, (z)[ D% = (7)
la|<l, aga?, a#(1,0,...,0)

=(I=Q)f(@)= Y Bal)(DC,9).
la|<l, acal
By projecting the equation (6) onto Egj, we obtain the system

Nig.. 0 DiC + > N, DC = b(z,v). (8)
|a|<l, agtal, a#(1,0,...,0)

Here the vector function b : Q — RF is defined by the formula

(f()= Y.  Ba(z)D,T).
|o|<l, aga?
Therefore, equation (6) is reduced to equation (7) and system (8). This equation (7), as a
differential equation with respect to v, has the form of Cauchy-Kovalevskaya.

1.3. Selection of initial conditions. Theorems of existence and uniqueness

Let us find the solution of eq. (1) which would satisfy the initial conditions (2), (3). Since
I'Eoso—k C Fioo—k, the solution (5) satisfies the initial conditions (2), (3) if and only if

i . B(I—P)gi(x’),i:O,...,ll—l,
Dtv‘t:(]— { Bgi(x’), i:ll,...,l—l, (9)
DjCli=o = Bi(a'), i=0,...,11 — 1. (10)

Here f;(2') are coefficients of projections Pg;(z'), i = 0,...,l1 — 1. Hence, the desired v(x)
satisfies the initial-value problem (7), (9) in the Cauchy-Kovalevskaya form, and the desired
vector function C(z) satisfies, respectively, the initial-value problem (8), (10).

Consider the following two cases when the initial-value problem (8), (10) also has the Cauchy-
Kovalevskaya form.

Case 1. k =n.

Hence, in system (8), Njo.0 = 0, Nj,0..0 = F is a unique matrix. If X, = 0 for [; <| o |< I,
condition 2 is satisfied for P = Z?<_’7§1)>(‘051)7 Q= Z?<',w-(1)>z§1),

7

{al =0} v{a®=0}Vv{ max |a|<l} (11)
ac(alUa?)
then system (8) has the order of I and the Cauchy-Kovalevskaya form.

In this connection, the corresponding initial-value problems (7), (9); (8), (10) have unique
solutions.

If N, are triangular n x n—matrices with zeros on the main diagonal and to the right of it,
and condition (11) holds, then system (8) turns out to be a recurrent sequence of equations of
the order of /; in the Cauchy-Kovalevskaya form.

The reasoning explicated above implies the following

Theorem 1. Let B be a Fredholm operator, (Agpgl),w,il)> = i, 1,k = 1,n, and let condition

2 for P = Z?(-,’ygl)}gogl), Q= Z?(-,%(l)}z(l) and condition (11) be satisfied. If for I} <| o |< 1

(]
the matrices X, are either equal to zero or all the matrices have zeros to the right of the main
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diagonal, and for Iy <| a | these have zeros also on the main diagonal, then problem (1), (2), (3)
has a unique solution.

Case 2. k > n.

Now, in the system (8) Ny 0 = Np, Nj,0..0 = N4, where the matrices Xp, N4 are as defined
above (see section 1.2).

Theorem 2. Let

1. conditions 1, 2 be satisfied, furthermore, in condition 2 o' =0 or a® = 0;
2. matrices N, = [N?kmk:l are lower block-triangular, i.e. R, =0 fori < k;

3. there are zeros in each diagonal block X§; to the left of the nonmain diagonal, and for
| @ |> 1y there are zeros also on the nonmain diagonal.

Then the initial-value problem (1), (2), (3) has a unique solution.

For the purpose of proving it is sufficient to note that under the conditions of Theorem 2
system (8) turns out to be a recurrent sequence of linear differential equations of the order of [y
in the Cauchy—Kovalevskaya form, and eq. (7) is a differential equation of the order of /; in the
Cauchy—Kovalevskaya form with the bounded operator coefficients. Note that due to the structure
of the matrices X!, components of the vector function C' :  — RF are defined in the following
SEqUENCe Cip,, .-+, Cl1; C2pys - - -3 €21, Cnpn» - - - s Cn1. FOr a more special situation, details of proving
may be found in [12].

1.4. The left and right regularizators of singular operators in Banach spaces

Let A and B be constant linear operators from F; to Es5, where E; and Es are Banach
spaces, z(t) is an abstract function, ¢t € R,, with the values in F4(F2). The set of such functions is
denoted by X;(Y;). Now introduce the operator L;, defined on X; and Y; and which is commutable
with operators B, A. The examples of such an operator L; are differential and integral operators,
difference operators and their combinations. Note that if operators are solved with respect to
higher order derivatives, then they usually generate correct initial and boundary value problems.
In other cases, when operators are unsolved according to higher order derivatives, we encounter
singular problems (see subsec. 1.1).

Consider the operator L;B — A, which acts from X; to Y;, where B, A are closed linear
operators from E; to Fy with dense domains, and D(B) C D(A). If B is invertable, then the
operator L; B—A can be reduced to regular operator by multiplication on B!, If B is uninvertible,
then L;B — A is called the singular operator. Let operator B in L;B — A be Fredholm and
dim N(B) =n > 1. If A = 0 is an isolated singular point of the operator-function B—AA, then the
operators L; B—A, BL;— A admit some regularization. For the purpose of explicit representation of
the regularizer we use Schmidt’s pseudo resolvent I' = B!, where B = B + o<, A*l/JZ-(p s

Aaﬁl(p . On account of condition 1 (sect. 1) and using the equalities qﬁgj ) = I‘A(bﬁj _1), w(j ) =

)

F*A*wi(j*l), j=2,...,p;, i=1,...,n it is easy to verify the following equalities

n  pi )
C =S50 < P S 6) (LB — A) = L — TA,
i=1 j=1

n  pi

(LeB— A=Y ST < gy > ¢)) = Ly — AT

i=1 j=1

As a result, we have the following
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Theorem 3. Suppose condition 1 in section 1.2 be satisfied. Then

n

n P Pi
TS50 < 0P > gy and T = YN0 < gy > ¢

i=1 j=1 i=1 j=1

are the left and right reqularizators of LB — A, respectively.

2. Generalized solutions

In this section we present the main ideas of a new approach to the study of degenerate
linear differential equations in Banach spaces. Studies of solvability of the Cauchy problem for
these equations in the classes of finitely smooth functions have shown that such problems have
smooth (classical) solutions only for certain relations between the input data of the problem,

e., between initial conditions and right-hand side (of free function) equation. The search for
these sufficient conditions, as well as formulas for the solution itself, usually is the goal of such
studies. In general case the absence of classic solution naturally leads (in linear case) to the
formulation of problems in the class of distributions (generalized functions), since in this case
there is no need to match the input data of the problem. Therefore, for linear equations the
three problems have been formulated. First we need to allocate classes of generalized functions
in Banach spaces in which solutions are unique. Second, we need to develop the technology of
the generalized solutions construction. And finally we have to study the relationship between the
classic generalized solutions. Such triple problem we study in terms of fundamental operator-
functions of degenerate integral-differential operators. In order to find the solutions of differential
equations in distributions spaces we employ the fundamental operator function which appears to
be the most natural tool.

In order to present the essence of this approach we use the following example of the Cauchy
problem for integral-differential equation of the second kind

t
Bu®(t) = +/g (t — s)Au(s)ds + f(t), (12)
0

u(0) = ug, u'(0) =y, (13)

where A, B are closed linear operators from F; to Fs, with dense domains of definition, D(B) C
D(A), Ey and E, are Banach spaces, ¢(t) is continuous function, f(t) is sufficiently smooth
function B is Fredholm operator.

Let us introduce the main terminology from [14], which use below.

2.1. Generalized functions in Banach spaces

Let E be Banach space, let E* be — conjugate Banach space. We call the set of finite infinitly
differentiable functions s(t) with values in K(E*) as the main space K (E*). The convergence in
K(E*) we introduce as follows. The sequence of functions s, (t) converge to s(t) in K(E*) if:

a) IR > 0 such that Yn € N supps,(t) C [-R, R];
b) Yo € N for n — 400 sup || st )() s (t) || 0.
[-R,R]

Generalized function (distribution) with values in Banach space E we call any linear
continuous functional defined on K (E*). The set of all generalized functions with values in E we
note as K'(F). Convergence in K'(E) is defined as week (point-wise). Here we follow the classic
monograph of V.S.Vladimirov and define the set of generalized functions as D’. The equality of
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two generalized functions, support of generalized function, multiplication of generalized function
on infinitly differentiable function are defined as for classic generalized functions. Any locally
Bohner integrable function f(¢) with values in E derive the following regular generalized function

“+o00

(f<t>,s<t>) = [ sty w0 € K(B),

— 00

All the generalized functions, which operations can be defined using that rule are called as regular
generalized functions. The rest of the generalized functions are called as singular. The classic
example of singular generalized function is the Dirac delta-function:

<a5(t),s(t)> = (a,s(0))dt, Vs(t) € K(E), VYa € E.

The distribution set with left-bounded support (K',(E) C K'(FE)) we denote as K/ (E). This
class is the most conventional in our studies.

Let Ej, FE, are the Banach spaces, A(t) € C* is operator-function with values in
L(E1, E2), h(t) € D' is classic generalized function [18]. Then the following multiplication (formal
expression) A(t)h(t) is called as generalized operator-function. The following generalized operator-
function will correspond to integral-differential operator (12)

Ly(6(t)) = B&"(t) — A(6(t) + 9(1)6(t)).

Let f(t) € K/ (E1), h(t) € D', then the generalized function A(t)h(t) x f(t) € K/ (E»)
defined as follows

(A(t)h(t) * f(t),s(t)) = (h(t), <f(7),A*s(t+T))), Vs(t) € K(Es)

is called as convolution of generalized operator-function A(¢)h(t) and generalized function f(t).

This definition is correct since supports of the functions h(t) € D/, u f(t) € K/ (E1) are left
bounded. It’s proofed using the same scheme as proof of the convolution existence in algebra D',
in classical theory of generalized functions [18]. It is to be noted that convolution exists in the
distributions space with left bounded support and it has associativity property which we employ
to proof the principal statements here.

Let us introduce the key concept. The fundamental operator-function of integral-differential
operator L2(0(t)) is called generalized operator-function &£;(t), which satisfies the following
equalities:

Ex(t) % L2(3(1)) * ult) = u(t), Vu(t) € KL (Ey),

La(6(t)) % Ea(t) xv(t) = v(t), Yo(t) € K (E»).

The reason for such construction introduction is as follows. If the fundamental operator-
function &> (t) is known for integral-differential operator L£2(8(t)), then in class K’ (F1) exists the
unique generalized solution

u(t) = &(t) » f(t) € K, (E1)

of
Lo(5(t) *ult) = f(t), f(t) € KL (En).

Indeed, if v(t) # u(t) is other solution of convolution equation then

v(t) = Ea(t) * L2(0(2)) * v(t) = E(t) * f(t) = u(?).
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2.2. Fundamental operator-functions of degenerative integral-differential
operators and applications

Theorem 4. If A, B are closed linear operators from Ey into Fs, D(B) C D(A), D(A)
D(B) = E1, B is Fredholm operator, R(B) = R(B), B has complete A-Jordan set {(pf ), i
n, j=1,p;} [17], then

a) 2nd order differential operator (B(SN (t) — Aé(t)) on the class K'\ (E2) has fundamental

operator-function

. n  pi
£1(1) =TT | 5SS a1 ot
i=1 j=1

n |pi—1 [pi—k

_Z Z Z ¢(J> (pi—k+1—j) 5(k)(t) ,

i=1 | k=0 | j=1
b) 2nd order integral-differential operator
(B(S” (t)— A(6(t) + g(t)H(t))) in class K! (E) has the following fundamental operator-function

o0 k—1 $2k—1 n )
)=TY <5(t) + g(t)@(t)) * me( JAD)F x| T=) Z QP
k=1

=1 j=1

n |pi—1 [ pi—k

SIS o) 6<2’“><t>*(6<t>+R<t>0<t>)kH ,

where {1#1(]), i=1,n, j=1,p;} — A*-Jordan set of the operator B*, T'— is the Trenogin-Schmidt
[17] operator, R(t) is resolvent of the kernel (—g(t)0(t)).

The Cauchy problem (12)-(13) in terms of generalized functions can be presented as following
convolution equation

La(6(t))  a(t) = F(D)O(t) + Burd(t) + Buod' (1),

which is class of distributions with left bounded support K’ (E1) has the following unique solution

a(t) = Ex(t) * ( F(OO(E) + Buro(t) + Buoé’(t)> . (14)

Further analysis of the singular and regular components of the expression (14) for generalized
solution allows us to obtain the theorems on classic solutions of the problem (12)-(13).

Let us demonstrate that based on the following examples.

Example 1. (Boussinesk—Love Equation) For equation which model (in 1D case)
longitudinal oscillations in thin elastic bar with taking into account the lateral inertia [19],

(A — Aoy (t, 7) = ®Av(t, ) + f(Z), N\ a#0,

where T € Q C R™, Q is bounded area with boundary 02 of the class C'*°, we study the
Cauchy-Dirichlet problem in the cylinder € x R

ov

n =uv(z) ze€N

t=0

- Uo(j)7
t=0
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=0 (z,t) €02 xR,.
[2}9]
We can reduce that problem to Cauchy problem (12)-(13) with g(¢) = 0, if the spaces E; and E»
can be selected as follows

o k+2
Ey=H [Q]E{UGW§+2: u(i)zO,EG@Q}, E2EHkEW2k

(Y

where Wlﬂg = WIf(Q) is Sobolev space 1 < p < oo, and let
B=X-A, A=0d’A, Meo(A).

Here B is Fedholm operator and lengths of all the A-Jordan chains are 1s, i.e. in the formula
for fundamental operator-function & (t) from the theorem p; = 1. Which means that generalized
solution (14) do not contains the singular component. The remaining regular component will be
classic solution of this problem if the following conditions are fuilfilled

(f(i‘) + O‘2>‘U0(a_7)v Spk) =0, ('Ul(f)a ka) =0Vpr: A=A,

here ), are eigen functions of the Laplace operator, which correspond eigen value A € o(A).
Example 2. (Equation of viscoelastic plates with memory) Let us address the
following equation

t
(7 - A)Utt(ta :Z‘) = _AQU(tv j) + /g(t - S)AQU(Sv i‘)ds + f(t7 j)>
0
where Z € Q C R™, Q is bounded area with boundary 9 of the class C*, form =2 wu f(t,z) =0

such equation describes the oscillation of viscoelastic plates with memory [20]. We follow here the
last example and study the Cauchy-Dirichlet problem on cylibder Q2 x R4

ov
v =v9(Z), — =u(Z) ze€N
t=0 ot t=0
v =0 (x,t) € 00 x Ry.

o0
Such problem we can reduce to the Cauchy problem (12)—(13), if we select spaces and operators
as follows

o k+4

Ey=H [Q]E{UEWQICH: u(:)i")—O,:EG@Q}, Ey = HF =Wk
B=~n—-A, A=-A? ~eo(A).

Here (similar with example 1) B is Fredholm operator and lengths of all the A-Jordan chains
are equal to 1, i.e. in the formula for fundamental operator-function £;(t) from the theorem all
p; = 1, i.e. generalized solution (14) does not contain singular component. Hence the remaining
component will be the classic solution if the following conditions are fuilfilled

(f<o, 7) — 220(2), @k) 0,

ot

here ¢y, are eigen functions of Laplace operator which correspond to eigen value A € o(A).

(af(o’x) —7*01(Z) + 9(0)7*v0(%), wk) = 0¥k A=A,
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3. Conclusion

The approach presented in the paper employs essentially the technique of generalized Jordan
sets [16], stable pseudoconverses of Noether operators and (P, Q) —commutativity of the operators
[13] (in accordance with the Jordan structure of the equation’s operator coefficients). This is
right the technique that makes it possible to state correct initial-boundary-value problems for
the differential equations with partial derivatives and with the Noether (unbounded) operator in
the main part, as well as to reduce these problems to regular ones. This approach has given
the possibility to construct generalized solutions with the finite singular part and to obtain
solutions of a number of classes of singular differential equations in closed form [14, 2]. For the
first time such an approach was applied by Sidorov [10] in 1972 for the purpose of constructing
the asymptotic of branching solutions of nonlinear singular differential and integro-differential
equations. Later the method was developed in a number of works and applied to different
problems (see the bibliography in [14]). For the case of matrix coefficients, the technique of
pseudoconverses of matrices and differential regularizers was developed in detail in the works by
Yu.Ye. Boyarintsev, M.V. Bulatov, V.F. Chistyakov and others on the basis of classical methods
of linear algebra, This technique was applied by these authors for the purpose of numerical
solving algebro-differential equations. Our method can be applied in a more general situation
of unbounded operator coefficients, and so, it can be employed not only for constructing the
asymptotic of accurate solutions but also for development of stable numerical methods for some
classes of Sobolev-type [15] singular differential equations with partial derivatives for which a
theory of numerical methods still does not exist.

The work was supported by Federal Framework Programm <Scientific and Teaching Staff of
Innovative Russia for 2009-2013>, State Contract Ne 11696, 20.09.2010.
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HEIITPEPBIBHBIE 1 OBOBIIIEHHBIE PEIITEHN A
CUHI'YJ/IAPHBIX NHTEI'PO-/INOPEPEHITNAJIBHBIX
YPABHEHUI B BAHAXOBEIX TIPOCTPAHCTBAX

H.A. Cudopos, M.B. Dasrances

CrposiTcsi HepepbIBHBIE ¥ 0OOOIIEHHBIE PEIeHUs] CUHTYJISPHBIX ypaBHEHN B OaHa~
XOBBIX TpocTpancTBax. Ha ocHoBe anbrepHaTuBHOrO MeToa JIamyrnosa-1lIMunra 1 0606-
IIIEHHBIX YKOPJAHOBBIX HAOOPOB M hepeHITnaIbHO-0IEPATOPHOE YPABHEHIE B YACTHBIX
[IPOU3BOJHBIX € (DPEJIrOJIBMOBBIM OIIEPATOPOM B TVIABHOM BBIPAYKEHUU PEIYIUPYETCS K
peryssipHoit 3asade. C MOMOIIBIO 9TOI TEXHUKU IIOCTPOEHBI JIEBbIE U IIPABBIE PETYJIsIPU-
3aTOPBI BBIPOXKJIEHHBIX OIEPATOPOB B DAHAXOBBIX IIPOCTPAHCTBAX U IOJIyYeHbI B SIBHOM
BUie (DYHIAMEHTAJbHBIE OITEPATOPHI Psi/ia KJIACCOB BBIPOXK/IEHHBIX YDABHEHUIA.

Karouesvie crosa: cunzyiaphrsie YpasHEHUs, PELYAAPU3AUUL, pacnpedeaerus, PyH-
damenmanvras onepamop-PyrKyua.
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