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We show that well known Sobolev spaces can quite naturally be treated as 
Pontryagin spaces. This point of view gives a possibility to obtain new properties 
for some traditional objects such as simplest differential operators. 
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Introduction 

Let H  be a separable Hilbert space with a scalar product ( , )⋅ ⋅ . H  is said to be an indefinite metric 

space if it is equipped by a sesquilinear continuous Hermitian form (indefinite inner product) [ , ]⋅ ⋅  such 
that the corresponding quadratic form has indefinite sign (i.e. [ , ]x x  takes positive, negative and zero 
values). The indefinite inner product can be represented in the form [ , ] [ , ]G⋅ ⋅ = ⋅ ⋅ , where G  is a so-called 
Gram operator. The operator G  is bounded and self-adjoint. If the Gram operator for an indefinite met-
ric space is boundedly invertible and its invariant subspace corresponding to the negative spectrum of G  
is finite-dimensional, lets say κ -dimensional, the space is called a Pontryagin space with κ  negative 
squares. There are a lot of problems in different areas of mathematics, mechanics or physics that can be 
naturally considered as problems in terms of Operator Theory in Pontryagin spaces. We have no aim to 
give here an overview on this theory and its application. We refer only to the standard text books [1, 2, 
10] and to [14] for a brief introduction. 

Our scope is a modest illustration of some singular situations that shows an essential difference be-
tween Operator Theory in Hilbert spaces and in Pontryagin spaces. For this goal we use Sobolev spaces 
that represents a new approach. 
 
1. Preliminaries 

A Krein space ( ,[ , ])⋅ ⋅K  is a linear space K  which is equipped with an (indefinite) inner product 
(i.e., a hermitian sesquilinear form) [ , ]⋅ ⋅  such that K  can be written as 

+ –= [+]ɺK G G                (1) 

where ( , [ , ])± ± ⋅ ⋅G  are Hilbert spaces and +ɺ  means that the sum of +G  and –G  is direct and + –[ , ] 0=G G . 
The norm topology on a Krein space K  is the norm topology of the orthogonal sum of the Hilbert 
spaces ±G . It can be shown that this norm topology is independent of the particular decomposition (1); 

all topological notions in K  refer to this norm topology and || ||⋅  denotes any of the equivalent norms. 
Krein spaces often arise as follows: In a given Hilbert space ( ,( , ))⋅ ⋅G , every bounded self-adjoint opera-
tor G  in G  with 0 ( )Gρ∈  induces an inner product 

[ , ] : ( , ), ,x y Gx y x y= ∈G ,        (2) 

such that ( ,[ , ])⋅ ⋅G  becomes a Krein space; here, in the decomposition (1), we can choose +G  as the spec-

tral subspace of G  corresponding to the positive spectrum of G  and G−  as the spectral subspace of G  
corresponding to the negative spectrum of G . A subspace L  of a linear space K  with inner product 
[ , ]⋅ ⋅  is called non-degenerated if there exists no , 0x x∈ ≠L , such that [ , ] 0x =L , otherwise L  is called 
degenerated; note that a Krein space K  is always non-degenerated, but it may have degenerated sub-
spaces. An element x∈K  is called positive (non-negative, negative, non-positive, neutral, respectively) 
if [ , ] 0x x >  ( 0≥ , 0< , 0≤ , 0= , respectively); a subspace of K  is called positive (non-negative, etc., 
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respectively), if all its nonzero elements are positive (non-negative, etc., respectively). For the definition 
and simple properties of Krein spaces and linear operators therein we refer to [2], [13] and [1]. 

If in some decomposition (1) one of the components ±G  is of finite dimension, it is of the same di-
mension in all such decompositions, and the Krein space ( ,[ , ])⋅ ⋅K  is called a Pontryagin space. For the 

Pontryagin spaces K  occurring in this paper, the negative component –G  is of finite dimension, say κ ; 
in this case, K  is called a Pontryagin space with κ  negative squares. If K  arises from a Hilbert space 
G  by means of a self-adjoint operator G  with inner product (2), then K  is a Pontryagin space with κ  
negative squares if and only if the negative spectrum of the invertible operator G  consists of exactly κ  
eigenvalues, counted according to their multiplicities. In a Pontryagin space K  with κ  negative squares 
each non-positive subspace is of dimension κ≤ , and a non-positive subspace is maximal non-positive 
(that is, it is not properly contained in another non-positive subspace) if and only if it is of dimension κ . 
If L  is a non-degenerated linear space with inner product [ , ]⋅ ⋅  such that for a κ -dimensional subspace 

−L  we have 

[ , ] 0, , 0x x x x−< ∈ ≠L  

but there is no ( 1)κ + -dimensional subspace with this property, then there exists a Pontryagin space K  
with κ  negative squares such that L  is a dense subset of K . This means that L  can be completed to a 
Pontryagin space in a similar way as a pre-Hilbert space can be completed to a Hilbert space. The spec-
trum of a selfadjoint operator A  in a Pontryagin space with κ  negative squares is real with the possible 
exception of at most κ  non-real pairs of eigenvalues λ , λ  of finite type. We denote by ( )ALλ  the al-

gebraic eigenspace of A  at λ . Then dim ( ) dim ( )A A=L Lλ λ
 and the Jordan structure of A  in ( )ALλ  

and in ( )AL
λ

 is the same. Further the relation 

0 ( )

( ) dim ( )
A

A A
σ σ

κ κ
+∈ ∩ ∈ ∩

= +∑ ∑
ℝ ℂ

L−
λ λ

λ λ

 

holds, where 0σ  denotes the set of all eigenvalues of A  with a nonpositive eigenvector and ( )Aκ−λ  de-

notes the maximal dimension of a nonpositive subspace of ( )ALλ . 
Moreover, according to a theorem of Pontryagin, A  has a κ -dimensional invariant non-positive 

subspace max
−L . If q  denotes the minimal polynomial of the restriction | maxA −L , then the polynomial 

q q∗ , where ( ) ( )q z q z∗ = , is independent of the particular choice of max
−L  and one can show that 

[ ( ) ( ) , ] 0q A q A x x∗ ≥  for ( )x Aκ∈D . As a consequence, a selfadjoint operator in a Pontryagin space pos-
sesses a spectral function with possible critical points. For details we refer to [11, 13]. 

The linear space of bounded linear operators defined on a Pontryagin or Krein space 1K  with values 

in a Pontryagin or Krein space 2K  is denoted by 1 2( , )L K K . If 1 2:= =K K K  we write ( )L K . We study 

linear relations in K , that is, linear subspaces of 2K . The set of all closed linear relations in K  is de-

noted by ( )ɶC K . Linear operators are viewed as linear relations via their graphs. For the usual definitions 
of the linear operations with relations and the inverse we refer to [7, 8, 9]. We recall only that the multi-

valued part mulS  of a linear relation S is defined by ( ){ }0mul | yS y S= ∈ . 

Let S be a closed linear relation in K . The resolvent set ( )Sρ  of S is defined as the set of all 

∈ℂλ  such that 1( ) ( )S −− ∈L Kλ . The spectrum ( )Sσ  of S is the complement of ( )Sρ  in ℂ . The 

extended spectrum ( )Sσɶ  of S is defined by ( ) ( )S Sσ σ=ɶ  if ( )S∈L K  and ( ) ( ) { }S Sσ σ= ∞ɶ ∪  other-

wise. We set ( ) : \ ( )S Sρ σ=ɶ ɶℂ . The adjoint S+  of S is defined as 

( ) ( ){ }: [ , ] [ , ] for all fh
h fS f h f h S+
′ ′′ ′= = ∈ . 

S is said to be symmetric (selfadjoint) if S S+⊂  (resp. S S+= ). 
For the description of the selfadjoint extensions of closed symmetric relations we use the so-called 

boundary value spaces (for the first time the corresponding approach was applied in fact by A.V. Strauss 
[15, 16] without employing the term “boundary value space”). 
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Definition 1. Let A  be a closed symmetric relation in the Krein space ( ,[ , ])⋅ ⋅K . We say that 

0 1{ , , }Γ ΓG  is a boundary value space for A+  if ( ,( , ))⋅ ⋅G  is a Hilbert space and there exist linear map-

pings 0 1, : A+Γ Γ →G  such that ( )0

1
: : AΓ +

ΓΓ = → ×G G  is surjective, and the relation 

1 0 0 1
ˆ ˆˆ ˆ[ , ] [ , ] ( , ) ( , )f g f g f g f g′ ′− = Γ Γ − Γ Γ       (3) 

holds for all ( )ˆ f
ff ′= , ( )ˆ g

gg A′= ∈ . 

If a closed symmetric relation A  has a selfadjoint extension �A  in K  with �( )Aρ ≠ ∅ , then there ex-

ists a boundary value space 0 1{ , , }Γ ΓG  for A+  such that �A  coincides with 0kerΓ  (see [4]). 
For basic facts on boundary value spaces and further references see e.g. [3, 4, 5] and [6]. We recall 

only a few important consequences. For the rest of this section let A  be a closed symmetric relation and 

assume that there exists a boundary value space 0 1{ , , }Γ ΓG  for A+ . Then 

0 0: kerA = Γ  and 1 1: kerA = Γ                (4) 

are selfadjoint extensions of A . The mapping ( )0

1

Γ
ΓΓ =  induces, via 

{ }1 ˆ ˆ: |A f A f− +
Θ = Γ Θ = ∈ Γ ∈Θ , ( )Θ∈ ɶC G , 

a bijective correspondence AΘΘ֏  between ( )ɶC G  and the set of closed extensions A A+
Θ ⊂  of A . In 

particular (5) gives a one-to-one correspondence between the closed symmetric (selfadjoint) extensions 
of A  and the closed symmetric (resp. selfadjoint) relations in G . Moreover, AΘ  is an operator if and 
only if 

( ){ }0 mul {0}h h A+Θ Γ ∈ =∩ .     (6) 

If Θ  is a closed operator in G , then the corresponding extension AΘ  of A  is determined by 

( )1 0kerAΘ = Γ − ΘΓ .           (7) 

Let [ ]: ker( ) ran( )A A+ ⊥= − = −Nλ λ λ  be the defect subspace of A  and set 

( ){ }ˆ : f
f f= ∈N Nλ λλ . 

Now we assume that the selfadjoint relation 0A  in (4) has a nonempty resolvent set. For each 0( )Aρ∈λ  

the relation A+  can be written as a direct sum of (the subspaces) 0A  and N̂λ  (see [4]). Denote by 1π  

the orthogonal projection onto the first component of 2
K . The functions 

 
1

1 0
ˆ( ) : ( | ) ( , )π −= Γ ∈֏ N L G Kλλ γ λ , 0( )Aρ∈λ , 

and 
1

1 0
ˆ( ) : ( | ) ( )M −= Γ Γ ∈֏ N L Gλλ λ , 0( )Aρ∈λ          (8) 

are defined and holomorphic on 0( )Aρ  and are called the γ -field and the Weyl function corresponding 

to A  and 0 1{ , , }Γ ΓG . For 0, ( )Aρ∈λ ζ  the relation (3) implies ( ) ( )M M∗ =λ λ  and 

( )1
0( ) 1 ( )( ) ( )A −= + −γ ζ ζ−λ ζ γ λ     (9) 

and 

( ) ( ) ( ) ( ) ( )M M ∗ +− = −λ ζ λ ζ γ ζ γ λ                (10) 
hold (see [4]). Moreover, by [4], we have the following connection between the spectra of extensions of 
A  and the Weyl function. 

Lemma 2. If ( )Θ∈ ɶC G  and AΘ  is the corresponding extension of A  then a point 0( )Aρ∈λ  be-

longs to ( )Aρ Θ  if and only if 0  belongs to ( ( ))Mρ Θ − λ . A point 0( )Aρ∈λ  belongs to ( )i Aσ Θ  if and 

only if 0  belongs to ( ( ))i Mσ Θ − λ , , ,i p c r= . 

For 0( ) ( )A Aρ ρΘ∈ ∩λ  the well-known resolvent formula 



Strauss V.A., Some Sobolev Spaces as Pontryagin Spaces 
Trunk C.  

Серия «Математика. Механика. Физика», выпуск 6 17 

1 1 1
0( ) ( ) ( )( ( )) ( )A A M− − − +

Θ − = − + Θ −λ λ γ λ λ γ λ            (11) 
holds (for a proof see e.g. [4]). 

Recall, that 0 ∈ℂλ  is called the eigenvalue of the operator pencil ( )L λ , if there is a vector 

0 0( 0)h h∈ ≠G  such that 0 0( ) 0L h =λ . The vector 0h ∈G  is called the eigenvector of the operator pen-

cil ( )L λ . A system 0 1, ,..., kh h h , is called a Jordan chain for ( )L λ , if 

( )
0

0

1
( ) 0

!

m
j

m j
j

L h
j −

=
=∑ λ , for 0,1,...,m k= .   (12) 

 
2. The Underlying Space 

Let 1,2(0,1)H  be the Sobolev space of all absolutely continuous functions f  with 2(0,1)f L′∈ . Let 

k  be a positive real number, 0k > . We define for 1,2, (0,1)f g H∈ 1 

2 2(0,1) (0,1)
[ , ] : ( , ) ( , )k L L
f g k f g f g′ ′= − .    (13) 

If L  is an arbitrary subset of 1,2(0,1)H  we set 

{ }[ ] 1,2: (0,1) :[ , ] 0 for allk
kx H x y y⊥ = ∈ = ∈L L . 

Then we have the following. 

Proposition 3. For the space ( )1,2(0,1), [ , ]kH ⋅ ⋅  we have the following properties. 

(1) If k  equals 2 2
1

n π
 for some n∈ℕ , then the function 1,2(0,1)g H∈ , defined by ( ) cos( )g x n xπ=  

belongs to the isotropic part of ( )1,2(0,1), [ , ]kH ⋅ ⋅ , that is 

1,2[ , ] 0 for all (0,1)kf g f H= ∈ . 

(2) If 2
1k

π
> , then ( )1,2(0,1), [ , ]kH ⋅ ⋅  is a Pontryagin space with one negative square. 

(3) If 2
1k

π
≤  and 2 2

1
n

k
π

≠  for all n∈ℕ , then ( )1,2(0,1), [ , ]kH ⋅ ⋅  is a Pontryagin space with a finite 

number of negative squares. Set 

2 2

1
: span | ,jf k j

j π−
  = ≤ ∈ 
  

ℕH , 

where 1,2(0,1)jf H∈  is defined by ( ) sin( )jf x j xπ= . Then the number κ−  of negative squares of 

( )1,2(0,1), [ , ]kH ⋅ ⋅  satisfies 

dim 1κ− −= +H . 

Proof: Assertion (1) is an easy calculation. We assume 2 2
1

n
k

π
≠  for n∈ℕ  all. Define the operator 

0A  by 

{ }1,2 1,2
0( ) : (0,1) | (0,1) and (0) (1) 0A g H g H g g′= ∈ ∈ = =D , 

0 :A g g′′= −  for 0( )g A∈D . 

Let us note that the functions ( ) sin( )jf x j xπ= , 1,2...j =  are eigen functions of 0A . 

For 0( )g A ⊥
−∈ ∩D H , where ⊥

−H  denotes the orthogonal complement with respect to the usual sca-

lar product 2(0,1)
( , )

L
⋅ ⋅  but within the Hilbert space 1,2(0,1)H , we have also that 2(0,1)

( , ) 0
L

f g =  for all 

f −∈H . Thus, g  has the representation 1
k

i ij
g f

π
α∞

>=∑ . This implies that there exists an 0ε >  with 

                                                      
1 Let us note that the expression 2 2( ( )) ( )k y t y t′ −  with t  as the time is (up to a constant) the Lagrangian for free small oscillations in one di-

mension (see [12, p. 58] for details). From this point of view the corresponding integral represents the action. 
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2 2
1

0 (0,1) (0,1)
( , ) ( )( , )

kL L
A g g g gε> +  for all 0( )g A ⊥

−∈ ∩D H . Therefore, there exists constants , 0c c >ɶ  

with 

2 2 1,20 (0,1) (0,1) (0,1)
[ , ] ( , ) ( , ) ( , )k L L H
g g c A g g g g c g gε> + > ɶ  

for 0( )g A ⊥
−∈ ∩D H , so 0( )A ⊥

−∩D H  is a uniformly positive. It is easy to see that for f −∈H  we have 

[ , ] 0kf f < . This shows that the closure of 0( )AD  with with respect to the usual scalar product in the 

Hilbert space 1,2(0,1)H  is a Pontryagin space where the number of negative squares equals dim−H . We 

define 1,2
1 2, (0,1)h h H∈  by 

( ) ( )1 1
1 sin cosh k x k x

− −
= +  and ( ) ( )1 1

2 sin cosh k x k x
− −

= − . 

We have 

( )21 1
1 1[ , ] 2 sinkh h k k

− −
= −  and ( )21 1

2 2[ , ] 2 sinkh h k k
− −

= . 

and 
[ ]

0 1 2( ( )) sp{ , }kA h h⊥ =D , 

This proves (3). If 2
1k

π
> , then {0}− =H  and the above considerations imply (2). � 

 
3. A Symmetric Operator Associated to the Second Derivative of Defect Four  
 
For the rest of this paper, we assume that k  is such, that 

1
sin 0k

−
≠ . 

Then, according to Proposition 3, the space ( )1,2(0,1), [ , ]kH ⋅ ⋅  is a Pontryagin space. We consider the 

following operator A , defined by 

{ }1,2 1,2( ) : (0,1) | , (0,1) with (0) (1) (0) (1) (0) (1) 0A g H g g H g g g g g g′ ′′ ′ ′ ′′ ′′= ∈ ∈ = = = = = =D  

and 
:Ag g′′= −  for ( )g A∈D . 

Lemma 4. Then A  is a closed symmetric operator in ( )1,2(0,1), [ , ]kH ⋅ ⋅ . 

Proof: Obviously, A  is symmetric. The best way to show the closedness is via the calculation of  A++ . 
We leave it to the reader. � 
 
As 

[ ] 1,2
0mul ( ( )) { (0,1) | [ , ] 0 for all ( )}k

kA A x H x y y A⊥+ = = ∈ = ∈D D , 

we have mulg A+∈  if and only if for all ( )f A∈D  

2(0,1)
0 [ , ] ( , )

L
kf g f kg g′′= = − + . 

The set ( )AD  is dense in 2(0,1)L  and this implies 

1 2mul sp{ , }A f f+ = ,       (14) 

where 1 2,f f  are defined by 
1

1 sinf k x
−

=  and 
1

2 cosf k x
−

= . 
An easy calculation (more detailed?) shows that 

( ) ( ){ }1 2

0 1,2, (0,1), ,g
g f fA g g Hα β α β+

′′− + ′ ′′= + ∈ ∈ℂ . 

Let ( )1 1 1 2

f
f f fα β′′− + +  and ( )2 1 2 2

g
g f fα β′′− + +  be elements from A+  with , ( )f g A∈D  and 1 2 1 2, , ,α α β β ∈ℂ . 

Then we have 
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1 1 1 2 2 1 2 2[ , ] [ , ]k kf f f g f g f fα β α β′′ ′′− + + − − + + =  
1 1 1 1 1 1
0 0 0 0 1 2 1 1 0 2 2 2 1 0| | | | ( ) | ( ) |fg f g kf g kf g k f f g k f fα β α β′ ′ ′′ ′ ′ ′′= − + − + + − − − . 

We define mappings 4
0 1, : A+Γ Γ →ℂ  by 

( )
1 1 1 2

(0) (0)
(1) (1)

0 (0)
(1)

f kf
f kff

f f f f
f

α β

′′+
′′+

′′− + +

 
 Γ =
 
 

 and  

( )1 1 1 2 1
1 1

1 1

(0)
(1)

1

( cos sin )

f
f

f
f f f k

k k k

α β α
α β− −

′−
′

′′− + + −

−

 
 Γ =  
 
 

 for ( )1 1 1 2

f
f f f Aα β

+
′′− + + ∈ . 

 

Theorem 5. The triplet 0 1{ , }Γ Γ  is a boundary value space for A+ . In particular 1 1: kerA = Γ  is an 
operator and a selfadjoint extension of A , i.e. 

{ }1,2 1,2
1( ) : (0,1) | , (0,1) with (0) (1) 0A g H g g H g g′ ′′ ′ ′= ∈ ∈ = =D  

and 

1 :A g g′′= − , 1( )g A∈D . 

Moreover, for 0( )Aρ∈λ , the Weyl function is given by 

( )M =λ

1 1

1 1 1 1

1 1

1 1 1 1

1 1 1 1

1 1

1 1
1 1tan sintan sin tan sin

1 1
1 1sin tansin tan sin tan

1 1

tan sin tan sin
1

sin tan

k k
k kk k k k k k

k k
k kk k k k k k

k k

k k k k k k k k
k

k k k k

− −

− − − −

− −

− − − −

− − − −

− −

− −

− −

− −

−

   − − +   
   

   − + −   
   

−

λ λ 1 −1
λ λλ λ

λ λ −1 1
λ λλ λ

λ λ1 −1

−1 1
1 1

1

sin tan

k

k k k k
− −

−

 
 
 
 
 
 
 
 
 −
 

λ λ

. 

Proof: The above calculations imply that 0 1{ , }Γ Γ  is a boundary value space for A+ . Let \∈ℂ ℝλ . 

Define 1,2
1 2, (0,1)g g H∈  by 

( )1 cosg x= λ  and ( )2 sing x= λ .     (15) 

Then we have 

1 2 1 2ker( ) sp{ , , , }A g g f f+ − =λ . 

Let 1 2 1 2f g g f fα β γ δ= + + +  for some , , ,α β γ δ ∈ℂ . Then 

( ) 1 1
1 2

1 1

(1 )
(1 )cos (1 )sin

0 0 ( ) ( )

cos sin sin cos
k k

k
k kf f

f f f f

k k

α
α β

α δγ δ
α β γ δ −

−
− + −

+′′− + − + −
+ + +

 
   Γ = Γ =      

 

λ

λ λ λ λ

λ λ λ

λ λ

 

and 

( )
1

1 1 1 1

1

1 11 1

sin cos cos sin

1 ( )

( ) cos ( )sin

k

k k

k

k k k kf
f k

k k k k

β γ
α β γ δ

γ

γ δ

−

− −

− −

− −

− + + −

− −

− − −

 
 
 Γ =
 
 
 

λ

λ λ λ λ

λ λ

λ λ

 

Now, by (8), it is follows that M  is of the above form. � 
Now, via (5) we can parameterize all selfadjoint extensions of A  via all selfadjoint relations Θ  in 

4
ℂ . 

Theorem 6. Let Θ  be a selfadjoint relation in 4ℂ . Then AΘ  is a selfadjoint extension of A . If for all 
,α β ∈ℂ  
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1 1

0
0

sin cos

mul \ {0}

k k

α
β α− −

−

 
 ∉ Θ
 
 

    (16) 

holds, then AΘ  is an operator. If, in particular, Θ  is a selfadjoint matrix, then AΘ  is a selfadjoint opera-
tor and an extension of A  with domain 

(0) (0)(0)
(1) (1)'(1)1,2 1,2

(0)0
(1)0

( ) : (0,1) | , (0,1),

g kgg
g kgg

g
g

A g H g g H

′′+′−
′′+

Θ

      ′ ′′= ∈ ∈ = Θ 
        

D . 

Proof: Relation (16) follows from (6), (14) and the definitions of 0Γ  and 1Γ . If Θ  is a matrix, (16) is 

satisfied and the description of ( )AΘD  follows from (7). � 
 
4. A Symmetric Operator Associated to the Second Derivative of Defect Two 
 
We start this Section opposite to Section 3. For this we put 

{ }1,2 1,2( ) : (0,1) | , (0,1)A g H g g H′ ′′= ∈ ∈ɶD        (17) 

and 

:Ag g′′= −ɶ , ( )g A∈ ɶD . 

Thus, the operator Aɶ  corresponds to the same formal differential expression as the operator considered 
in the previous section, but with a different domain which is in some sense maximal. Let us calculate 

A+ɶ . For , ( )f g A∈ ɶD  we have 
1 1

0 0
[ , ] ( ) ( ) ( ) ( )kAf g k f t g t dt f t g t dt′′′ ′ ′′= − + =∫ ∫ɶ  

( ) ( )1 1 1 1

0 00 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k f t g t f t g t f t g t f t g t k f t g t dt f t g t dt′′ ′ ′ ′′ ′ ′ ′ ′′′ ′′= − − + − − + =∫ ∫  

( ) ( ) ( ) ( )(1) (1) (1) (1) (1) (1) (0) (0) (0) (0) (0) (0) [ , ]kkf f g f k g g f k g g kf f g f Ag′′ ′ ′ ′′ ′ ′′ ′′ ′= − + + + − + + + + ɶ . 

Note that the maps ( )( ) (1) (1)f t kf f′′ +֏ , ( ) (1)f t f ′֏ , ( )( ) (0) (0)f t kf f′′ +֏  and (0) (0)f f ′֏  

represent unbounded linear functionals on 1,2(0,1)H . Thus, the expression [ , ]kAf gɶ  gives a continuous 

linear functional (with respect to f ) on 1,2(0,1)H  if and only if 

( ) ( )(1) (1) (1) (0) (0) (0) 0g kg g kg g g′ ′′ ′′ ′= + = + = =  and by the definition of the adjoint operator the latter 

conditions restrict the domain of A+ɶ . For brevity below we set :A A+= ɶ . Thus, we have the following 
operator A , defined by 

{ }1,2 1,2( ) : (0,1) | , (0,1) with (0) (1) 0, (0) (0) 0 and (1) (1) 0A g H g g H g g g kg g kg′ ′′ ′ ′ ′′ ′′= ∈ ∈ = = + = + =D  

and 
:Ag g′′= − , ( )g A∈D . 

Then A  is  a closed symmetric operator in ( )1,2(0,1), [ , ]kH ⋅ ⋅ , which is, in contrast to Section 3, densely 

defined. In particular 

( ){ }1,2| , (0,1)g
gA A g g H+

′′− ′ ′′= = ∈ɶ  

is an operator and therefore all selfadjoint extensions of A  are operators. 

We define mappings 2
0 1, : A+Γ Γ →ℂ  by 

( ) ( )(0) (0)
0 (1) (1)

f f kf
f f kf

′′+
′′ ′′− +Γ =  and ( ) ( )(0)

1 (1)
f f
f f

′−
′′ ′−Γ =  for ( )f

f A+
′′− ∈ . 

Theorem 7. The triplet 0 1{ , }Γ Γ  is a boundary value space for A+ . The Weyl function is given by 
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(1 ) tan (1 )sin

(1 )sin (1 ) tan

( )
k k

k k

M

−
− −

−
− −

 
 =  
  

λ λ

λ λ λ λ

λ λ

λ λ λ λ

λ , 0( )Aρ∈λ . 

Proof: The above calculations imply that 0 1{ , }Γ Γ  is a boundary value space for A+ . Let \∈ℂ ℝλ  and 
1,2

1 2, (0,1)g g H∈  as in (15). Then we have 

1 2ker( ) sp{ , }A g g+ − =λ . 

Let 1 2f g gα β= +  for some ,α β ∈ℂ . Then 

( ) ( ) ( )(1 )
0 0 (1 )cos (1 )sin

f f k
f f k k

α
α β

−
′′− − + −

Γ = Γ = λ
λ λ λ λ λ

 

and 

( ) ( ) ( )1 1 sin cos
f f
f f

β
α β

−
′′− − +

Γ = Γ = λ
λ λ λ λ λ

 

Now, by (8), it is follows that M  is of the above form. � 
 
Lemma 8. The operator 0 0kerA = Γ  is a selfadjoint extension of A  with a compact resolvent and 

1 2 2 2
0 0( ) ( ) { , ,4 ,9 ,...}pA A kσ σ π π π−= = . 

Proof: The operator 1 1kerA = Γ  is selfadjoint in the Hilbert space 1,2(0,1)H . We have for ( )f A∈D  

1,2 2 2,2
2 2

1 (0,1) (0,1) (0,1)
(( ) , ) || || || ||

H L H
A I f f f f′+ = + , 

where 2,2(0,1)H  is the Sobolev space of all functions 1,2(0,1)f H∈  with 1,2(0,1)f H′∈ . This gives 

2,2 1,2 2,2
2

(0,1) (0,1) (0,1)
|| || || ( ) || || ||

H H H
f A I f f≤ + . 

Therefore, as the embedding of 2,2(0,1)H  into 1,2(0,1)H  is compact, the selfadjoint operator 1A  has a 

compact resolvent. By (11) the difference between the resolvents of 0A  and 1A  is of finite rank, hence 

0A  has a compact resolvent. We have 0 0( ) ( )pA Aσ σ= . Now (18) follows from a simple calculation. � 

QUESTION: Is A simple? That is 1,2
0(0,1) clsp{ker( ) : ( )}H A Aρ+= − ∈λ λ  Give a simple proof for it 

Proposition 9. Let α ∈ℝ , 0α ≠  and 

| | 2 kα < .      (19) 

Then the operator Aα  defined by 

{ }1,2 1,2( ) : (0,1) | , (0,1) with (0) (0) (0) and (1) (1) (1)0A g H g g H g g kg g g kgα α α′ ′′ ′ ′′ ′ ′′= ∈ ∈ = + = + =D  

and 
:A g gα ′′= − , ( )g Aα∈D . 

is a selfadjoint extension of A  with non-real eigenvalues. 

In the case 2 kα =  we have that the selfadjoint extension 
2 k

A  of A  has a Jordan chain of length 

two corresponding to the eigenvalue 1
k

− . 

Proof: Set 
1

1

0

0

α
α

−

−

 −
Θ =  

  
. 

Then A AαΘ = , hence, by Lemma 2 and the fact that 0( )Aσ ∈ℝ  (see Lemma 8), we have for all non-real 

λ  that ( )p Aασ∈λ  if and only if 

2 2
2

2 2 2 2

1
0 det( ( ) ) 2

(1 )

k
M

kk k k

α
α

 
= − Θ = + − +  −  

λ λ
λ λ

λ
.  (20) 

Hence, 
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2 2

1,2 2 2

1

42
k

k k k

α α α= − ± −λ  

are the solutions of Equation (20). Assertion (19) implies now the existence of two non-real eigenvalues 
of Aα . 

In the case 2 kα =  we have that the functions 0 1 2
, ( )

k
h h A∈D  given by 

1

0( ) x kh x e
−

=  and 
1

1( )
2

x kx
h x e

−
= −  

satisfy 

1 02

1
k

A h h
k

 + = 
 

 and 02

1
0

k
A h

k
 + = 
 

, 

i.e. 0 1{ , }h h  is a Jordan chain of 
2 k

A  corresponding to the eigenvalue 1
k

− . � 
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НЕКОТОРЫЕ ПРОСТРАНСТВА СОБОЛЕВА КАК ПРОСТРАНСТВА 
ПОНТРЯГИНА 
 
В.А. Штраус1, К. Трунк2 
 

Показано, что известные пространства Соболева могут быть естественно снабжены структу-
рой пространства Понтрягина. Такой подход позволяет получить новые свойства у таких тради-
ционных объектов как, например, простейшие дифференциальные операторы. 

Ключевые слова: функциональные пространства, пространства Понтрягина, самосопря-
жённые операторы, дифференциальные операторы. 
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