РАСЧЕТ ЭНТРОПИИ КРИСТАЛЛИЧЕСКИХ ОКСИДОВ ТИТАНА

А.Г. Рябухин

Введение

Энтропия является важной термодинамической и теплотехнической характеристикой, так как определяет необратимую часть тепловой энергии, то есть определяет КПД и необратимость системы. Энтропия - структурно-чувствительное свойство, которое изменяется даже при аллотропических и иных изменениях пространственного расположения частии.

Многочисленные попытки вычисления энтропии сложных соединений суммированием энтропии элементов или их инкрементов не дают результатов, согласующихся с экспериментальными данными. Для простых веществ в состоянии идеальных газов статистическая физика дает теоретическое решение для величины энтропии [1]. Для растворов тоже имеются некоторые решения [2-8].

Сложно обстоит дело с кристаллическими веществами, но именно они представляют теоретический и огромный практический интерес. Особенно это касается оксидов (самых распространенных в природе и в шлаках соединений). При раскислении сталей существенная доля важных легирующих компонентов (V, Ti, Mn и др.) переходит в шлак. Зачастую концентрация в шлаке может достигать их содержания в бедных рудах. Поэтому разумное сохранение (складирование) шлаков имеет колоссальное экономическое и экологическое значение.

Математическая модель

В работах [9-11] дана математическая модель расчетов теплоемкости оксидов (дальтонидов и бертоллидов). Сущность этой модели состоит в том, что обратная величина интегрального значения свойства равна сумме обратных величин компонентов с учетом объемной структурной постоянной. Эта модель показала хорошее согласие с имеющимися экспериментальными данными тешюемкостей многочисленных оксидов и их температурных зависимостей [11]. Поэтому оправдала себя идея деления C_{nx} на области твердых растворов.

В основу разрабатываемой математической модели расчета энтропии кристаллических оксидов положена сущность модели теплоемкости.

Принципиальные положения модели:

1. Абсолютная энтропия сложного вещества складывается из двух величин: энтропии, связанной с массой соединения (ΔS_m — от mass), и энтропии, связанной с межчастичным взаимодействием (ΔS_m — от interaction). Все расчеты относятся к 1 молю металла, а энтропии выражены в Джмоль $^{-1}$ K^{-1} .

$$S = \Delta S_m + \Delta S_m; \tag{1}$$

$$\Delta S_m = \frac{1}{2} R \ln M \,. \tag{2}$$

Так как рассматривается кристаллическое состояние, то у частиц имеется только одна степень свободы поступательного движения - вдоль пути

реакции. Отсюда $\frac{1}{2}R$. M - относительная молекулярная масса, отнесенная к 1 молю металла.

 ΔS_{in} рассчитывается как разность известных величин S и ΔS_m

$$\Delta S_{in} = S - \Delta S_m. \tag{3}$$

- 2. В зависимости от электронного строения атомов, а следовательно от числа степеней окисления и характера химических взаимодействий, определяющих структуру вещества, диктуется возможность и необходимость образования нескольких областей твердых растворов (ОТР)
- 3. В каждой ОТР выделяется кристаллообразующий компонент (КО). В 1 ОТР кристаллообразующим является металл, во 2 ОТР МеО или близкий по составу оксид с установленной кристаллической структурой и известной энтропией. При образовании 3 ОТР в качестве КО выступает оксид, ближайший к границе 2 ОТР.
 - 4. Расчетное уравнение имеет вид

$$\frac{1}{\Delta S_{m} (\text{MeO}_{x})} = \frac{1}{\Delta S_{m} (\text{KO})} - \frac{x - x_{\text{KO}}}{k \left[\Delta S_{m} (\text{O}) + \Delta S_{m} (\text{KO})\right]}, \tag{4}$$

где κ - структурная постоянная [1, 11], количественно характеризующая пространственное расположение взаимодействующих частиц. При переходе от сочетания одних структур (например, 1 ОТР) κ другому (например, 2 ОТР) происходит изменение величины κ . При этом изменяется и угол наклона линейной зависимости (4). Величина κ в каждой ОТР определяется сочетанием структурных констант, характерных для границ ОТР.

5. ΔS_m не является функцией температуры, поэтому температурная зависимость энтропии определяется изменениями ΔS_{in} компонентов.

Результаты расчетов и их обсуждение

Экспериментальные данные для расчетов взяты из [12, с. 593; 13, с. 351; 14; 15].

В качестве объектов для определения адекватности расчетов и экспериментальных (справочных) величин выбраны систем титан - кислород. Этот металл образует стехиометрические (дальтониды) и нестехиометрические (бертоллиды) оксиды, для которых имеются достаточно надежные

экспериментальные данные по составам, структурам и энтропиям.

Постоянным компонентом оксидов является кислород. При адсорбции, которая предшествует образованию сложного соединения (в результате химического взаимодействия), газы диссоциируют на радикалы или атомы [17, с. 373]. Атомы не находятся в свободном состоянии, при адсорбции они сразу вступают в связь с металлом или диффундируют через оксид.

$$S^0(O_2, 298, r) = 205,035 \pm 0,008;$$
 $S_m = \frac{1}{2}R\ln 15,9994 = 11,5261;$
 $S_m(O) = 102,5175 - 11,5261 = 90,9914.$
Эта величина будет использоваться в расчетах.

Система титан - кислород

В табл. 1 приведены исходные данные и результаты расчетов для системы Ti-O. Ті кристаллизуется в структуре $\Gamma\Pi Y$ (Mg), TiO - в $\Gamma U K$

(NaCl), Ti0, (рутил) - в тетрагональной (Ti0,).

В первой ОТР кристаллобразующим является металл (титан). Постепенно структура ГПУ (Mg) переходит в структуру ГЦК (NaCl). Этому соответству-

ет структурная постоянная $k_1 = \sqrt{2} \cdot \frac{\sqrt{3}}{3} = 0,81650$.

Уравнение (4) приобретает вид:

$$\frac{1}{\Delta S_{m} \left(\text{TiO}_{x}\right)} = \frac{1}{\Delta S_{m} \left(\text{Ti}\right)} - \frac{x}{0.8165 \left[\Delta S_{m} \left(\text{O}\right) + \Delta S_{m} \left(\text{Ti}\right)\right]}.$$
(5)

После подстановки экспериментальных величин, получаем:

$$\frac{1}{\Delta S_m \left(\text{TiO}_x\right)} = 0.06877 - 0.01161x. \tag{6}$$

Во второй ОТР кристаллобразующим является TiO. В этом случае наблюдается переход от

Таблица 1

Энтропии оксидов титана

	Веще-	Струк- тура	М	S [14, 15]	ΔS_m yp. (2)	ΔS_{in} yp. (3)	ΔS_{in}^{-1}	ΔS_{in}^{-1} yp. (6) yp. (8)	S yp. (1)
1	Ti	ГПУ (Mg)	47,90	30,627 ± 0,084	16,085	14,542	0,06877	0,06880	30,626
2	TiO	ГЦК (NaCl)	63,90	34,769 ± 0,209	17,283	17,486	0,05719	0,05717	34,775
3	$TiO_{1,5}$ Ti_2O_3	моно	71,90	40,604 ± 0,209	17,773	22,831	0,04380	0,04407	40,464
4	TiO _{1,667} Ti ₃ O ₅	моно	74,567	43,123 ± 0,418	17,925	25,198	0,03969	0,03970	43,116
5	TiO _{1,75} Ti ₄ O ₇	трикл	75,90	44,622 ± 0,628	17,998	26,624	0,03756	0,03731	44,658
6	TiO ₂ (рутил)	тетр	79,90	50,620 ± 0,209	18,212	32,408	0,03086	0,03095	50,522

Энтропии нестехиометрических оксидов титана и их АС

Таблица 2

	Веще-	М	ΔS_m	ΔS_{in} pacy. yp. (6), (8)	ΔS_m^{-1}	ΔS _{расч} yp. (3)	–Δ _f H [14]	<i>−P</i> yp. (9)	$-\Delta_{j}S$ yp. (10)	-Δ _f G yp. (11)
1	$TiO_{0,1}$	49,50	16,221	14,791	0,0676	31,012	57,321	40,875	9,863	54,380
2	$TiO_{0,2}$	51,10	16,354	15,049	0,0668	31,403	114,64	51,131	19,728	108,76
3	$TiO_{0,3}$	52,70	16,482	15,317	0,0653	31,797	171,96	61,382	29,583	163,14
4	$TiO_{0,4}$	54,30	16,606	15,594	0,0641	32,200	229,28	71,634	39,434	217,53
5	$TiO_{0,5}$	55,90	16,727	15,878	0,0630	32,605	286,60	85,886	49,281	270,72
6	TiO _{0,67}	58,57	16,920	16,384	0,0610	33,304	382,14	98,972	65,668	362,56
7	$TiO_{0,8}$	60,70	17,069	16,811	0,0595	33,380	433,88	112,64	78,761	410,40
8	TiO _{0,9}	62,30	17,177	17,145	0,0583	34,322	479,91	122,89	88,571	453,50
9	TiO _{1,01}	64,06	17,293	17,574	0,0569	34,867	530,50	134,17	99,303	500,89
10	$TiO_{1,1}$	65,50	17,386	18,337	0,0545	35,723	571,95	143,40	107,68	539,85
11	$TiO_{1,20}$	67,10	17,486	19,352	0,0519	36,738	617,98	153,65	116,91	583,12
12	TiO _{1,22}	67,72	17,506	19,463	0,0514	36,969	627,18	155,70	118,73	591,78
13	TiO _{1,25}	67,90	17,535	19,767	0,0506	37,302	640,99	158,77	121,47	604,77
14	TiO _{1,33}	69,23	17,616	20,662	0,0484	38,278	679,34	167,32	129,04	640,87

структуры ГЦК (NaCl) к тетрагональной у ${\rm TiO_2}$. Этому переходу отвечает структурная постоянная

$$k_{2} = 1 - \frac{1}{K(memp)} = 1 - \frac{3\sqrt{3}}{8} = 0,35048$$
. При x > 1:
$$\frac{1}{\Delta S_{m} \left(\text{TiO}_{x}\right)} = \frac{1}{\Delta S_{m} \left(\text{TiO}\right)} - \frac{x - 1}{0,35048 \left[\Delta S_{m} \left(\text{O}\right) + \Delta S_{m} \left(\text{TiO}\right)\right]}$$
. (7)

После подстановки экспериментальных данных:

$$\frac{1}{\Delta S_m \left(\text{TiO}_x\right)} = 0,08347 - 0,0263x \tag{8}$$

Результаты расчетов по уравнениям (6) и (8) приведены в табл. 1 и на рис. 1.

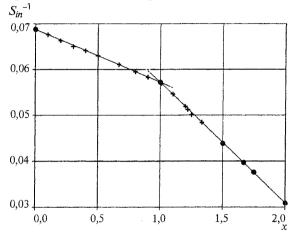


Рис. 1. Зависимость обратной величины энтропии взаимодействия от состава оксидов титана:

+ - эксперимент; • - расчет

Из сравнения полученных расчетных величин ΔS_m^{-1} и S с экспериментальными следует, что согласие не выходит за пределы доверительных интервалов последних.

Данные рис. 1 показывают хорошее согласие расчетных данных по линейным уравнениям (6) и (8) с опытными данными.

Полученные результаты позволяют использовать уравнения (6) и (8) для расчета энтропии нестехиометрических оксидов титана, для которых в справочной литературе приводятся данные по составам [15], структурам [15-17], энтальпиям образования [15, 17]. Наши расчеты являются предсказательными, они могут служить ориентирами для экспериментальных исследований.

В табл. 2 и на рис. 1 приведены результаты расчетов по уравнениям (6) и (8).

Полученные данные позволяют определить ΔG нестехиометрических оксидов титана (бертоллидов). В работах автора [1, 6, 18] обоснована и подтверждена справочными результатами перспективность использования Пи-потенциала (P)

$$P(\text{TiO}_x) = -S(\text{Ti}) - x S(\text{O}). \tag{9}$$

С другой стороны

$$P(\text{TiO}_x) = \Delta_f S(\text{TiO}_x) - S(\text{TiO}_x). \tag{10}$$

Решение уравнений (9) и (10) позволяет определить $\Delta_t S$.

$$\Delta_f G = \Delta_f H - T \Delta_f S.$$
 (11)
Результаты расчетов приведены в табл. 2.

Выволы

- 1. Предложена модель расчета энтропии кристаллических оксилов.
- 2. Измеряемая энтропия включает две компоненты: определяемая массой ΔS_m (mass) и взаимодействием ΔS_i n (interaction).
- 3. Математическая часть модели предусматривает аддитивность обратных величин ΔS_{in} компонентов с учетом кристаллического строения веществ.
- 4. Адекватность расчетов и экспериментов показана на примерах стехиометрических и нестехиометрических оксидов титана.
- 5. Математическая модель обладает подтвержденным свойством предсказательности.
- 6. Зависимость величины энтропии взаимодействия от зарядности ионов, количества и распределения электронов, магнитной восприимчивости, температуры и т.д. требует специальных исследований ΔS_{in}

Литература

- 1. Э.А. Мелвин Хъюз. Физическая химия. -М: ИИЛ, 1962. -Кн.1и2.- 1148 с.
- 2. Рябухин А.Г. Эффективные ионные радиусы. Энтальпия кристаллической решетки. Энтальпия гидратации ионов: Монография. Челябинск: изд-во ЮУрГУ. 115 с.
- 3. Рябухин А.Г. Электрохимические и коррозионные свойства пористых электродов. Челябинск: Южно-Уральское кн. изд-во, 1976. 132 с.
- 4. Латимер В.М. Окислительные состояния элементов и их потенциал в водных растворах. М.: ИИЛ, 1954.-400 с.
- 5. Рябухин А.Г. Расчет стандартной энтропии гидратированных катионов// Журн. физ. химии. - 1981. <u>-T.LV.-No7</u>.-C. 1670-1673.
- 6. Рябухин А.Г. Стандартная энтропия электрона в водном растворе// Журн. физ. химии. 1977. Т. L1. -№4.~ С. 968-969.
- 7. Рябухин А.Г. Стандартная энтропия катионов (s^2p^6) в водном растворе// Изв. ЧМЗ УрО РАН. Челябинск, 2000. Вып. 3. С. 26-27.
- 8. Рябухин А.Г. Энтропия гидратации катионов $(s^2p^6)//M_3e$. ЧМЗ УрО РАН. Челябинск, 2000. Вып. 3. С. 77-78.
- 9. Рябухин А.Г. Расчет молярных теплоемкостей С° нестехиометрических бинарных соединений (бертолидов)// Вестник ЮУрГУ. Серия «Металлургия». 2003. -Вып. 4. -№8.~ С. 134-141.
- 10. Рябухин А.Г. Модель расчета стандартных теплоемкостей С⁰ нестехиометрических соединений// Изв. ЧНЦ УрО РАН. Челябинск, 2003. Вып. 4(21). С. 38-42.

- 11. Рябухин АТ., Стенников М.А. Теплоемкость кристаллических оксидов: Монография. -Челябинск: Изд-во ЮУрГУ, 2004. - 87 с.
- 12. Химическая энциклопедия. М.: БРЭ, 1995. -Т. 4.- 639 с.
- 13. Химическая энциклопедия. М.: СЭ, Ј98. Т. 1. 623 с.
- 14. Термические константы веществ: Справ, в 10 вып./ Под ред. В.П Глушко. М.: АН СССР, 1974. Т. VII, ч. 1. 342с.
- 15. Термодинамические свойства индивидуальных веществ: Справ, изд.: в 4 т./ Под ред. В.П.

- Глушко М: Наука, 1978. Т. І кн. 2. 326 с; 1982. Г. ІV, кн. 2. 559 с.
- 16. Физико-химические свойства окислов: Справ./ Под ред. Г.В. Самсонова. М.: Металлургия, 1978. 471 с.
- 17. Глесстон С, Лейдлер К., Эйринг Г. Теория абсолютных скоростей реакций: пер. с англ. М.: НИЛ, 1948. -583 с.
- 18. Рябухин А.Г. Способ согласования термических свойств веществ// Изв. ЧНЦ УрО РАН. Челябинск, 2000. Вып. 2. С. 29-31.