МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НАПРЯЖЁННОГО СОСТОЯНИЯ ПОПЕРЕЧНОГО ПЛАСТИЧЕСКОГО СЛОЯ РАСТЯГИВАЕМОЙ ПОЛОСЫ ПРИ ГИПОТЕЗЕ ПАРАБОЛИЧЕСКИХ СЕЧЕНИЙ

А.И. Носачева

Менее прочные (МП) слои являются неизбежным следствием многих существующих технологий производства сварных соединений. Исследование возникающего в МП слоях контактного упрочнения позволяет точнее оценить несущую способность неоднородных соединений, содержащих

63

такие слои. При математическом моделировании напряжённо-деформированного состояния (НДС) МП слоя возникают недоопределённые краевые задачи для систем уравнений в частных производных гиперболического типа. Недостаток краевых условий обычно компенсируется ограничениями на классы решений на основе «частичного предугадывания внутреннего состояния материала». Естественным ограничением такого вида является гипотеза плоских поперечных сечений (ГППС) $v_{y} = W(y)$, где v_v – скорость перемещения точек слоя в поперечном направлении. На основе ГППС проведено исследование НДС поперечного МП слоя полосы при растягивающей нагрузке в случае плоской деформации [1]. Естественным уточнением ГППС являются гипотезы, учитывающие прогиб плоских сечений при поперечном растяжении слоя $v_y = W(y)(1+\varphi(x,\delta))$, где φ – некоторая «малая» величина, характеризуемая малым параметром **б**. Например, в гипотезе параболических сечений, использованной при математическом моделировании напряжённого состояния прослоек в стержнях $\varphi(x,\delta) = -\delta x^2$. При плоской деформации $\varphi(x,\delta) = -\delta x^2$ не вполне удобно. В работе применяется гипотеза $\varphi(x,\delta) = -2\sin^2\frac{\delta x}{2}$, то есть

$$v_{y} = W(y)\cos(\delta x). \tag{1}$$

Цель работы – исследование напряжённого состояния МП слоя при гипотезе (1) и сравнение результатов с результатами, основанными на ГППС.

Как известно, НДС пластической среды при плоской деформации определяется системой уравнений

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0; \qquad (2)$$

$$\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} = 0; \qquad (3)$$

$$\left(\sigma_x - \sigma_y\right)^2 + 4\tau_{xy} = 4K^2; \tag{4}$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0;$$
(5)

2.

2

$$\frac{\sigma_x - \sigma_y}{2\tau_{xy}} = \frac{\frac{\partial v_x}{\partial x} - \frac{\partial v_y}{\partial y}}{\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x}}.$$
(6)

Функции, входящие в уравнения (2)–(6), определены на прямоугольнике $[-1;1] \times [-\kappa;\kappa]$, где $\kappa \in (0;1]$ – относительная толщина МП слоя. Введём обозначения $Y(y) = \frac{W''(y)}{W'(y)} + \delta^2 \frac{W(y)}{W'(y)}$. Получим из (1) и (6)

$$\tau_{xy} = \frac{1}{4\delta} (\sigma_x - \sigma_y) Y(y) \operatorname{tg}(\delta x) \,.$$

Подставив полученное выражение для τ_{xv} в (4), найдём

$$\sigma_{x} - \sigma_{y} = \pm \frac{4K}{\sqrt{4 + Y^{2}(y)\frac{\mathrm{tg}^{2}(\delta x)}{\delta^{2}}}} = \pm 2K \left(1 - \frac{1}{8}Y^{2}(y)\frac{\mathrm{tg}^{2}(\delta x)}{\delta^{2}} + \frac{3}{128}Y^{4}(y)\frac{\mathrm{tg}^{4}(\delta x)}{\delta^{4}} - \dots\right)$$

(знак плюс соответствует растяжению соединения, знак минус – сжатию; в работе рассматривается растяжение). Отсюда

$$\tau_{xy} = \frac{Y(y) \operatorname{tg}(\delta x)}{2\delta} - \frac{Y^3(y) \operatorname{tg}^3(\delta x)}{16\delta^3} + \frac{3Y^5(y) \operatorname{tg}^5(\delta x)}{256\delta^5} - \dots$$
(7)

При малых значениях касательных напряжений можно считать, что

$$\tau_{xy} = \frac{Y(y) \operatorname{tg}(\alpha x)}{2\delta};$$
(8)

$$\sigma_{y} - \sigma_{x} = 2\left(1 - \frac{1}{8}Y^{2}(y)\frac{\operatorname{tg}^{2}(\delta x)}{\delta^{2}}\right).$$
(9)

Из (2) и (3) следует:
$$-\frac{\partial^2 (\tau_{xy}^2)}{\partial x \partial y} + \frac{\partial^2 \tau_{xy}}{\partial x^2} - \frac{\partial^2 \tau_{xy}}{\partial y^2} = 0$$
. Подставив сюда (8) и

(9), получим в силу граничного условия задачу

 $Y''(y) + 2YY' = 0, \ Y(0) = 0.$ ⁽¹⁰⁾

Результаты будут немного точнее, если количество слагаемых увеличить на одно, воспользовавшись равенством (7). После соответствующих рассуждений и преобразований аналог дифференциального уравнения (10) будет выглядеть следующим образом:

$$Y'' + 2YY' - \delta^2 Y = 0.$$
(11)

Аналитическим решением данного уравнения при начальных условиях Y(0) = 0, Y'(0) = A является функция

$$+\left(\frac{y^{2}}{\sqrt{A}} + \frac{5}{2A\sqrt{A}}\right) \operatorname{sh} 2\sqrt{A}y - \frac{3y}{2A} \operatorname{ch} 2\sqrt{A}y - \left(\frac{1}{2A\sqrt{A}} + \frac{2y}{\sqrt{A}}\right) \operatorname{th} \sqrt{A}y + \ldots$$

$$-\left(\frac{1}{2A\sqrt{A}} + \frac{2y}{\sqrt{A}}\right) \operatorname{th} \sqrt{A}y + \ldots$$

$$(12)$$

Численные эксперименты показали, что решение (12) и решения уравнений (10) и (11) при условиях Y(0) = 0 и $Y(\kappa) = b$ при различных подходящих значениях κ и b мало различаются. Поэтому используем уравнение (10). Точность основанных на них решений достаточна для приложений и позволяет получить не слишком громоздкие аналитические выражения в силу простоты решений задачи. Общее решение задачи (10) имеет вид

$$Y = \sqrt{A} \operatorname{th}\left(\sqrt{A}y\right),$$

где А – некоторая положительная постоянная.

Рис. 1. Графики решения краевых задач для уравнений (10) – сплошная и (11) – штриховая, график функции (12) – пунктирная. $\kappa = 0,3$ и K = 1,3; $x \in [0;0,3]$ (справа – выделенный фрагмент)

При малых значениях касательных напряжений можно считать, что $\tau_{xy} = \frac{\sqrt{A} \operatorname{th}(\sqrt{A}y)}{2} \cdot \frac{\operatorname{tg}(\delta x)}{\delta}$. Постоянная A находится из граничного условия $\tau(x_F,\kappa) = \tau_F$. Пусть наибольшее значение τ_F касательных напряжений τ_{xy} достигается в некоторой точке F с абсциссой x_F на контактной поверхности $y = \kappa$. Тогда для вычисления A следует решать трансцендентное уравнение $\sqrt{A}\kappa \operatorname{th}(\sqrt{A}\kappa) = \frac{2\delta\tau_F\kappa}{\operatorname{tg}(\delta x_F)}$. Введём обозначение. Пусть $y = \operatorname{a} \operatorname{th} d(x) - \phi$ ункция, обратная κ функции $x = y \operatorname{th} y$. Для малых значение

аргумента эта функция хорошо аппроксимируется функцией ний $\psi(x) = \sqrt{x + \frac{\sqrt{3}}{4}x^2}$, которая даёт ошибку в несколько тысячных. При $\kappa = 0,3$ и K = 1,3 значение параметра A = 5,0024. Из уравнений равновесия $\sigma_x = \frac{A \ln \left| \cos(\delta x) \right|}{2\delta^2 \cosh^2(\sqrt{A}y)} - \frac{\ln \left| \cosh\left(\sqrt{A}y\right) \right|}{2} + c;$ $\sigma_{y} = -\frac{\ln\left| \operatorname{ch}\left(\sqrt{A}y\right) \right|}{2\cos^{2}(\delta x)} + \frac{A\ln\left| \cos(\delta x) \right|}{2\delta^{2}} + 2 + c;$ $c = \sigma_F + \frac{\ln\left|ch\sqrt{A\kappa}\right|}{2\cos^2(\delta x_F)} - \frac{A\ln\left|cos(\delta x_F)\right|}{2\delta^2} - 2; \ \sigma_F = 2 + \frac{(K-1)(3-K)}{2}.$ 3 2.55 2.5 2 2.54 1.5 2.53F 2.52 0.5 0.1 0.2 0.3 0.1 ō 0.4

Рис. 2. Напряжения $\sigma_y, \sigma_x, \tau_{xy}$ (сверху вниз) для значения $\delta = 0,5$ – сплошная и по ГППС – пунктирная. $\kappa = 0,3$; K = 1,3; $x_F = 1 - \frac{4\kappa}{K+1}$, $x \in [0; x_F]$ (справа – выделенный фрагмент)

На рис. 2 показаны эпюры напряжений на контактной поверхности при гипотезе сечений данной работы при $\delta = 0,5$ и ГППС. Видно, что математические модели НС на основе ГППС практически не уступают по точности вычисления напряжений моделям, более детально учитывающим особенности деформирования МП слоёв.

Библиографический список

1. Дильман, В.Л. Математические модели напряжённого состояния неоднородных тонкостенных цилиндрических оболочек / В.Л. Дильман. – Челябинск: Изд-во ЮУрГУ, 2007. – 202 с.