МЕТОДИКА ПРОЕКТИРОВАНИЯ ОПТИМАЛЬНОЙ ПО МАССЕ НЕСУЩЕЙ СИСТЕМЫ ГРУЗОВОГО АВТОМОБИЛЯ ИЗ УСЛОВИЙ СТАТИЧЕСКОЙ ПРОЧНОСТИ

С.Ю. Звонарёва

До настоящего времени при проектировании автомобильных рам грузовых автомобилей не утвердилась практика выбора прочностных расчетных обоснований для вновь создаваемых конструкций. Проектирование ведется в основном по прототипам, с учетом проводимого расчета на изгиб от статической нагрузки, с подбором необходимой величины запаса прочности. Используя средства программного пакета ANSYS, оптимизируется рама автомобиля КАМАЗ-5308 (рис. 1) с целью снижения металлоемкости конструкции.

98

В качестве постоянных параметров, определяющих габариты рамы, были оставлены: колесная база автомобиля; ширина рамы; положение кронштейнов крепления двигателя, кабины, топливных баков, аккумуляторной батареи и т. д.; конструкция и места крепления грузовой платформы к раме, конструкция подвески. С учетом известных параметров, на основе конечных элементов с возможностью учета стесненного кручения BEAM188 построена параметрическая конечно-элементная модель рамы (рис. 2).

Рис. 1. Рама автомобиля КАМАЗ-5308

Рис. 2. Конечно-элементная модель автомобиля КАМАЗ-5308

Из практики проектирования и эксплуатации известно, что среди статических случаев нагружения наиболее тяжёлым для рамы является кососимметричное нагружение несущей системы. На рис. 3, а изображены углы закручивания по длине рамы левого лонжерона для балочной модели и уточненной модели рамы, основанной на оболочечных элементах SHELL63 (значения отличаются на 12 %). На рис. 3 (б, в, г) изображены графики напряжений по длине рамы при разных видах испытаний. На рисунках сплошная линия – напряжения по результатам испытаний, точки – расчетные напряжения в балочной модели.

Задача оптимизации была сформулирована, как нахождение такой формы, координаты и ориентации перечных сечений поперечин и лонжерона, которые бы обеспечивали минимальное значение массы (объема) при сохранении напряжений (не более 250 МПа) в раме и угла поворота стенки лонжерона (не более 5°) на уровне, не превышающем значений в исходной конструкции. Расчёт характеристик оптимальных поперечных сечений было принято проводить на основе вывешивания переднего колеса.

Для проведения оптимизационного расчета необходимо определить начальные значения и интервалы изменения оптимизируемых параметров. В качестве параметров выбраны: высота, ширина и толщина профиля, местоположение поперечин, ориентация поперечины относительно продольной оси рамы. Границы диапазонов изменения параметров установлены, исходя из следующих условий: технологии гибки листового материала; техники конструирования и расчетов на прочность.

Рис. 3: а – углы закручивания левого лонжерона рамы с грузовой платформой и балластным весом 9 т; б – напряжения в нижней полке лонжерона при изгибе; в – напряжения в нижней полке лонжерона при изгибе и кручении влево с балластом 9 т; г – напряжения в нижней полке лонжерона при изгибе и кручении влево с балла-

В результате серии оптимизационных расчетов вычислены геометрические параметры поперечных сечений лонжерона и девяти поперечин. Среди полученных наборов параметров самым оптимальным является вариант, при котором масса снилась на ~17 %. Значения параметров приведены в табл. 1. На рис. 4 схематично показан внешний вид рамы получившейся после проведения расчета.

Максимальные значения напряжений в 250 МПа наблюдаются только в одном месте рамы – в районе третьей поперечины. В остальных элементах напряжения не превышают 70...80 МПа. В основном напряжения в оптимизированной раме имеют такой же уровень, что и исходной конструкции (см. рис. 3). Амплитуды напряжений в оптимизированной конструкции при гармоническом воздействии снижены на 5–8 % по сравнению с исходной.

Таблица 1

Значения параметров конструкции до и после оптимизации

	Знач. до /		Знач. до /		Знач. до /
Наименование	после	Наименование	после	Наименование	после
параметра	оптими-	параметра	оптими-	параметра	оптими-
	зации, мм		зации, мм		зации, мм
Лонжерон (швеллер)		Поперечина № 3 (швеллер)		Поперечина № 6 (двутавр)	
Высота	240/232	Высота	135/199	Высота	160/217
Толщина	8/6,7	Ширина	108/120	Ширина	147/217
Ширина	80/77	Толщина	7/4,1	Толщина	8/4,1
Поперечина № 1		Ориентация 3/1		Поперечина № 7, 8	
(швеллер)				(швеллер)	
Высота	160/207	Поперечина № 4, 5 (швеллер)		Высота	135/121
					150/121
Ширина	80/86	Высота	135/199	Ширина	108/115
Толщина	7/4,4	Ширина	108/120	Толщина	7/4,5
Поперечина № 2		Толщина	7/4,1	Координата	7,43/7
(двутавр)				№ 7, м	
Высота	70/102	Ориентация	3/2	Координата	8,3/8,12
				№ 8, м	
Ширина	80/66	Координата	3.92/4.3	Ориентания	3/3
Linpiniu	00,00	№ 4, м	5,72/1,5	opiitiitiiti	
Толшина	6/4,6	Координата № 5, м 4,97/4,76	4.97/4.76	Поперечина № 9 (швеллер)	
			-,- ,, ,, 0		
Объем	0,0735/ 0,0604	Напряжения	55/66	Высота	160/243
		Sxmax, MПa			
Максималь- ный угол, рад	0,24/0,25	Напряжения	258/244	Ширина	100/97
		Symax, MПa			
		Напряжения	241/231	Толшина	7/7.7
		Szmax, MПa			,, , , ,

 $\langle\!\langle$

Рис. 4. Внешний вид рамы, имеющей минимальный вес при заданных параметрах нагружения

Далее модель с полученными параметрами подвергалась динамическому нагружению с целью получения оценки максимальных напряжений и ресурса в наиболее нагруженных сечениях. При моделировании движения автомобиля по асфальтированной дороге со скоростью 110 км/ч максимальные значения среднеквадратического отклонения напряжений в новой, более легкой раме достигли 160 МПа (во второй поперечине). Запас прочности составил 1,5. В наиболее нагруженных сечениях лонжеронов значения СКО напряжений достигали 80 МПа, что даже с учетом статических напряжений не превышает предела неограниченной выносливости материала. Однако напряжения 160 МПа и 80 МПа были получены в элементах, не имеющих концентраторов в виде отверстий и сварных швов.

Проектирование несущей конструкции грузового автомобиля, исходя из квазистатического расчета, позволяет быстро получить наглядное представление о том, как должна выглядеть рама для того, чтобы ее вес был минимальным, а характеристики прочности и жесткости достаточными для наиболее распространённых случаев нагружения автомобиля.